化学品泄漏事件自动取水系统的验证

Daeho Kang, Junho Jeon, M. Song, Jin-Sung Ra
{"title":"化学品泄漏事件自动取水系统的验证","authors":"Daeho Kang, Junho Jeon, M. Song, Jin-Sung Ra","doi":"10.36278/jeaht.22.3.126","DOIUrl":null,"url":null,"abstract":"An applicability evaluation was performed for an automatic sampling strategy to respond to chemical accidents and the method was compared with manual grab sampling. The auto sampling includes a deep-well pump and an auto reverse filtration system, which resulted in up to a maximum of 6h of running time. Sampling was carried out at three locations on May 22 and June 20, 2019 and pH, dissolved oxygen (DO), and temperature were measured on site. In addition, samples collected via the two methods were analyzed for BTEX (benzene, toluene, ethylbenzene and xylene), three elements (Fe, Mn and Zn) and microorganic pollutants. BTEX was not detected at all at the sites and the concentration ranges were 5.0 to16.0 μg/L for Fe, 0.9 to 65.0 μg/L for Mn, and N.D. to 24.0 μg/L for Zn. Target screening was performed for 15 micro organic pollutants including pharmaceuticals and pesticides and for the 12 compounds that were quantitatively analyzed, the concentration range was N.D. to 55.0 ng/L. We measured the concentrations and the values for the two sampling methods were compared, resulting in 14 out of 17 samples showing good agreement between the two methods. As a result, this automatic sampling method is expected to be applied in various fields (e.g., mobile analysis system).","PeriodicalId":15758,"journal":{"name":"Journal of Environmental Analysis, Health and Toxicology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Verification of Automatic Water Sampling System for Chemical Spill Events\",\"authors\":\"Daeho Kang, Junho Jeon, M. Song, Jin-Sung Ra\",\"doi\":\"10.36278/jeaht.22.3.126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An applicability evaluation was performed for an automatic sampling strategy to respond to chemical accidents and the method was compared with manual grab sampling. The auto sampling includes a deep-well pump and an auto reverse filtration system, which resulted in up to a maximum of 6h of running time. Sampling was carried out at three locations on May 22 and June 20, 2019 and pH, dissolved oxygen (DO), and temperature were measured on site. In addition, samples collected via the two methods were analyzed for BTEX (benzene, toluene, ethylbenzene and xylene), three elements (Fe, Mn and Zn) and microorganic pollutants. BTEX was not detected at all at the sites and the concentration ranges were 5.0 to16.0 μg/L for Fe, 0.9 to 65.0 μg/L for Mn, and N.D. to 24.0 μg/L for Zn. Target screening was performed for 15 micro organic pollutants including pharmaceuticals and pesticides and for the 12 compounds that were quantitatively analyzed, the concentration range was N.D. to 55.0 ng/L. We measured the concentrations and the values for the two sampling methods were compared, resulting in 14 out of 17 samples showing good agreement between the two methods. As a result, this automatic sampling method is expected to be applied in various fields (e.g., mobile analysis system).\",\"PeriodicalId\":15758,\"journal\":{\"name\":\"Journal of Environmental Analysis, Health and Toxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Analysis, Health and Toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36278/jeaht.22.3.126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Analysis, Health and Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36278/jeaht.22.3.126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对化学事故自动采样策略进行了适用性评价,并与人工抓取采样方法进行了比较。自动采样包括一个深井泵和一个自动反过滤系统,运行时间最长可达6小时。2019年5月22日和6月20日在三个地点采样,并在现场测量pH、溶解氧(DO)和温度。此外,对两种方法采集的样品进行了BTEX(苯、甲苯、乙苯和二甲苯)、三种元素(铁、锰、锌)和微量有机污染物的分析。各检测点均未检测到BTEX, Fe浓度范围为5.0 ~ 16.0 μg/L, Mn浓度范围为0.9 ~ 65.0 μg/L, Zn浓度范围为nd ~ 24.0 μg/L。对药物、农药等15种微量有机污染物进行了靶筛选,定量分析的12种化合物浓度范围为nd ~ 55.0 ng/L。我们测量了两种采样方法的浓度和值进行了比较,结果17个样本中有14个显示出两种方法之间的良好一致性。因此,这种自动采样方法有望应用于各个领域(如移动分析系统)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Verification of Automatic Water Sampling System for Chemical Spill Events
An applicability evaluation was performed for an automatic sampling strategy to respond to chemical accidents and the method was compared with manual grab sampling. The auto sampling includes a deep-well pump and an auto reverse filtration system, which resulted in up to a maximum of 6h of running time. Sampling was carried out at three locations on May 22 and June 20, 2019 and pH, dissolved oxygen (DO), and temperature were measured on site. In addition, samples collected via the two methods were analyzed for BTEX (benzene, toluene, ethylbenzene and xylene), three elements (Fe, Mn and Zn) and microorganic pollutants. BTEX was not detected at all at the sites and the concentration ranges were 5.0 to16.0 μg/L for Fe, 0.9 to 65.0 μg/L for Mn, and N.D. to 24.0 μg/L for Zn. Target screening was performed for 15 micro organic pollutants including pharmaceuticals and pesticides and for the 12 compounds that were quantitatively analyzed, the concentration range was N.D. to 55.0 ng/L. We measured the concentrations and the values for the two sampling methods were compared, resulting in 14 out of 17 samples showing good agreement between the two methods. As a result, this automatic sampling method is expected to be applied in various fields (e.g., mobile analysis system).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characteristics of Volatile Organic Compounds Distribution in Downtown Ansan Near Industrial Complexes Global Performance, Trends, and Challenges for Assessment and Management of Per- and Polyfluoroalkyl Substances (PFASs): A Critical Review Examination of the Utility of Environmental DNA Metabarcoding for Monitoring Fish Species in Han Rivr, Korea Distribution and Risk Assessment of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) in the South Han River Analysis and Change in Concentration of Micropollutants in Stream Affected by WWTP Effluents using Portable Composite Sampler and LC-HRMS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1