ZrO2, Ta2O5, Nb2O5联合铝热还原相形成特征的研究

A. S. Russkih, S. Agafonov, A. Ponomarenko
{"title":"ZrO2, Ta2O5, Nb2O5联合铝热还原相形成特征的研究","authors":"A. S. Russkih, S. Agafonov, A. Ponomarenko","doi":"10.37952/roi-jbc-01/19-60-11-79","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the advantage of using the metallothermic method for producing alloys, in contrast to traditional methods. Using the HSC Chemistry 6.1 software package, thermodynamic modeling was performed. The possibility of obtaining intermetallic compounds by the joint aluminothermic reduction of Zr, Ta, Nb oxides is shown. The alloy was obtained by aluminothermic reduction of aluminum, zirconium, tantalum and niobium oxides in a resistance furnace, followed by grinding and powder size 40-100 microns. An experimental study of the sequence of phase formation and the boundaries of their existence was investigated using differential thermal analysis (DTA). The experiment was carried out on a STA 449 F3 Jupiter (NETZSCH) synchronous thermal analysis instrument in an argon flow GOST 10157-79 (the volume fraction of argon is at least 99.993%), the flow rate of the gas used was 30 ml/min. X-ray phase analysis (XRD) of the products (after DTA) was carried out on an XRD 7000 diffractometer (Shimadzu). By the relative intensity of the lines of the various phases, their quantitative ratio was estimated. The diffraction patterns were decoded using literature data, as well as the JCPDS (International Center For Diffraction Data) and ASTM (American Society for Testing and Materials) databases. According to the obtained XRD data, in the sample at temperatures of 954.5 and 1309.1 ºС, respectively, the formation of a solid solution (Zr, Nb, Ta)Al2 occurs, which is isostructural to the intermetallic Al3Zr. In both cases, the concomitant ZrAl2 intermetallic compound is also formed. The performed study can serve as a scientific basis for the development of promising metallothermal technologies for the production of rare metal alloys.","PeriodicalId":9405,"journal":{"name":"Butlerov Communications","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the features of phase formation in the joint aluminothermic reduction of ZrO2, Ta2O5, Nb2O5\",\"authors\":\"A. S. Russkih, S. Agafonov, A. Ponomarenko\",\"doi\":\"10.37952/roi-jbc-01/19-60-11-79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the advantage of using the metallothermic method for producing alloys, in contrast to traditional methods. Using the HSC Chemistry 6.1 software package, thermodynamic modeling was performed. The possibility of obtaining intermetallic compounds by the joint aluminothermic reduction of Zr, Ta, Nb oxides is shown. The alloy was obtained by aluminothermic reduction of aluminum, zirconium, tantalum and niobium oxides in a resistance furnace, followed by grinding and powder size 40-100 microns. An experimental study of the sequence of phase formation and the boundaries of their existence was investigated using differential thermal analysis (DTA). The experiment was carried out on a STA 449 F3 Jupiter (NETZSCH) synchronous thermal analysis instrument in an argon flow GOST 10157-79 (the volume fraction of argon is at least 99.993%), the flow rate of the gas used was 30 ml/min. X-ray phase analysis (XRD) of the products (after DTA) was carried out on an XRD 7000 diffractometer (Shimadzu). By the relative intensity of the lines of the various phases, their quantitative ratio was estimated. The diffraction patterns were decoded using literature data, as well as the JCPDS (International Center For Diffraction Data) and ASTM (American Society for Testing and Materials) databases. According to the obtained XRD data, in the sample at temperatures of 954.5 and 1309.1 ºС, respectively, the formation of a solid solution (Zr, Nb, Ta)Al2 occurs, which is isostructural to the intermetallic Al3Zr. In both cases, the concomitant ZrAl2 intermetallic compound is also formed. The performed study can serve as a scientific basis for the development of promising metallothermal technologies for the production of rare metal alloys.\",\"PeriodicalId\":9405,\"journal\":{\"name\":\"Butlerov Communications\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Butlerov Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37952/roi-jbc-01/19-60-11-79\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Butlerov Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37952/roi-jbc-01/19-60-11-79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了与传统方法相比,使用金属热法生产合金的优势。利用HSC Chemistry 6.1软件包进行热力学建模。指出了用铝热联合还原Zr、Ta、Nb氧化物制备金属间化合物的可能性。该合金在电阻炉中对铝、锆、钽和铌氧化物进行铝热还原,然后进行研磨,得到粉体尺寸为40 ~ 100微米的合金。用差热分析(DTA)对相的形成顺序和存在边界进行了实验研究。实验在STA 449 F3 Jupiter (NETZSCH)同步热分析仪器上进行,氩气流量为GOST 10147 -79(氩气体积分数至少为99.993%),所用气体流量为30 ml/min。在日本岛津公司(Shimadzu)的XRD 7000衍射仪上对DTA后的产物进行了x射线相分析(XRD)。通过各相线的相对强度,估计出它们的定量比。使用文献数据以及JCPDS(国际衍射数据中心)和ASTM(美国测试与材料学会)数据库对衍射模式进行解码。根据所得XRD数据,样品在954.5℃和1309.1℃С温度下,形成了固溶体(Zr, Nb, Ta)Al2,该固溶体与金属间化合物Al3Zr呈同构关系。在这两种情况下,还形成伴随的ZrAl2金属间化合物。研究结果可为开发具有发展前景的稀有金属合金热技术提供科学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of the features of phase formation in the joint aluminothermic reduction of ZrO2, Ta2O5, Nb2O5
In this paper, we consider the advantage of using the metallothermic method for producing alloys, in contrast to traditional methods. Using the HSC Chemistry 6.1 software package, thermodynamic modeling was performed. The possibility of obtaining intermetallic compounds by the joint aluminothermic reduction of Zr, Ta, Nb oxides is shown. The alloy was obtained by aluminothermic reduction of aluminum, zirconium, tantalum and niobium oxides in a resistance furnace, followed by grinding and powder size 40-100 microns. An experimental study of the sequence of phase formation and the boundaries of their existence was investigated using differential thermal analysis (DTA). The experiment was carried out on a STA 449 F3 Jupiter (NETZSCH) synchronous thermal analysis instrument in an argon flow GOST 10157-79 (the volume fraction of argon is at least 99.993%), the flow rate of the gas used was 30 ml/min. X-ray phase analysis (XRD) of the products (after DTA) was carried out on an XRD 7000 diffractometer (Shimadzu). By the relative intensity of the lines of the various phases, their quantitative ratio was estimated. The diffraction patterns were decoded using literature data, as well as the JCPDS (International Center For Diffraction Data) and ASTM (American Society for Testing and Materials) databases. According to the obtained XRD data, in the sample at temperatures of 954.5 and 1309.1 ºС, respectively, the formation of a solid solution (Zr, Nb, Ta)Al2 occurs, which is isostructural to the intermetallic Al3Zr. In both cases, the concomitant ZrAl2 intermetallic compound is also formed. The performed study can serve as a scientific basis for the development of promising metallothermal technologies for the production of rare metal alloys.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of the quality of seeds of Anethum graveolens varieties Gribovsky and Lesnogorodsky by method of thermal analysis Comparison of the efficiency of photoionization at atmospheric pressure and electrospray ionization on the example of some aflatoxins and trichothecenes Ignition fluids as objects of chemical research in the investigation of arson crimes Quality control of milk powder with near-infrared spectroscopy Identification of regulatory sequences of the 35S promoter and NOS terminator in agricultural products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1