评估小麦粉生产对环境的影响

Kolsoum Pourmehdi, K. Kheiralipour
{"title":"评估小麦粉生产对环境的影响","authors":"Kolsoum Pourmehdi, K. Kheiralipour","doi":"10.22104/AET.2021.4704.1280","DOIUrl":null,"url":null,"abstract":"Evaluating the energy and environmental indicators allows for identifying the strengths and weaknesses of a system for optimizing material and energy consumption and developing strategies to reduce environmental impacts. This study determined and assessed the energy and environmental indicators of wheat flour production systems. The input and output materials and corresponding energy equivalents were calculated and then the energy indicators and forms. The environmental indicators were assessed by the life cycle assessment method in SimaPro software. The total input and output energies per year of flour production were 287935007 and 286675200 MJ, respectively. Wheat had the highest share (99.19%) of energy consumption in flour production; the energy ratio, productivity, intensity, and net energy gain indexes were equal to 1.02, 0.07 kg/MJ, 13.84, MJ/kg, and 0.31 MJ/kg, respectively. In the flour factory, the share of direct and indirect energy was 0.27 and 99.73%, respectively; the share of renewable and nonrenewable energy was 99.19 and 0.81%, respectively. Wheat input had the largest share of environmental indicators in flour production. The normalization step showed that the most important environmental indicator was marine water ecotoxicity (1.53×105 kg 1.4 DB eq/ton) followed by terrestrial ecotoxicity (36.59×105 kg 1.4 DB eq/ton), eutrophication (5.83kg PO4 eq/ton), and acidification potential (6.57kg SO2 eq/ton) indicator.","PeriodicalId":7295,"journal":{"name":"Advances in environmental science and technology","volume":"21 1","pages":"111-117"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Assessing the effects of wheat flour production on the environment\",\"authors\":\"Kolsoum Pourmehdi, K. Kheiralipour\",\"doi\":\"10.22104/AET.2021.4704.1280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evaluating the energy and environmental indicators allows for identifying the strengths and weaknesses of a system for optimizing material and energy consumption and developing strategies to reduce environmental impacts. This study determined and assessed the energy and environmental indicators of wheat flour production systems. The input and output materials and corresponding energy equivalents were calculated and then the energy indicators and forms. The environmental indicators were assessed by the life cycle assessment method in SimaPro software. The total input and output energies per year of flour production were 287935007 and 286675200 MJ, respectively. Wheat had the highest share (99.19%) of energy consumption in flour production; the energy ratio, productivity, intensity, and net energy gain indexes were equal to 1.02, 0.07 kg/MJ, 13.84, MJ/kg, and 0.31 MJ/kg, respectively. In the flour factory, the share of direct and indirect energy was 0.27 and 99.73%, respectively; the share of renewable and nonrenewable energy was 99.19 and 0.81%, respectively. Wheat input had the largest share of environmental indicators in flour production. The normalization step showed that the most important environmental indicator was marine water ecotoxicity (1.53×105 kg 1.4 DB eq/ton) followed by terrestrial ecotoxicity (36.59×105 kg 1.4 DB eq/ton), eutrophication (5.83kg PO4 eq/ton), and acidification potential (6.57kg SO2 eq/ton) indicator.\",\"PeriodicalId\":7295,\"journal\":{\"name\":\"Advances in environmental science and technology\",\"volume\":\"21 1\",\"pages\":\"111-117\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in environmental science and technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22104/AET.2021.4704.1280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in environmental science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22104/AET.2021.4704.1280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

通过评价能源和环境指标,可以确定优化材料和能源消耗的系统的长处和短处,并制定减少环境影响的战略。本研究确定并评估了小麦粉生产系统的能源和环境指标。计算输入输出物料及相应的能量当量,得出能量指标及形式。环境指标在SimaPro软件中采用生命周期评价法进行评价。每年面粉生产的总投入能量为287935007 MJ,总产出能量为286675200 MJ。小麦在面粉生产中所占的能量消耗份额最高(99.19%);能比、生产力、强度和净能增重指数分别为1.02、0.07、13.84、0.31 MJ/kg。在面粉厂中,直接能源占比为0.27%,间接能源占比为99.73%;可再生能源和不可再生能源占比分别为99.19%和0.81%。小麦投入在面粉生产的环境指标中所占比例最大。归一化步骤表明,最重要的环境指标是海水生态毒性(1.53×105 kg 1.4 DB当量/吨),其次是陆地生态毒性(36.59×105 kg 1.4 DB当量/吨)、富营养化(5.83kg PO4当量/吨)和酸化潜力(6.57kg SO2当量/吨)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessing the effects of wheat flour production on the environment
Evaluating the energy and environmental indicators allows for identifying the strengths and weaknesses of a system for optimizing material and energy consumption and developing strategies to reduce environmental impacts. This study determined and assessed the energy and environmental indicators of wheat flour production systems. The input and output materials and corresponding energy equivalents were calculated and then the energy indicators and forms. The environmental indicators were assessed by the life cycle assessment method in SimaPro software. The total input and output energies per year of flour production were 287935007 and 286675200 MJ, respectively. Wheat had the highest share (99.19%) of energy consumption in flour production; the energy ratio, productivity, intensity, and net energy gain indexes were equal to 1.02, 0.07 kg/MJ, 13.84, MJ/kg, and 0.31 MJ/kg, respectively. In the flour factory, the share of direct and indirect energy was 0.27 and 99.73%, respectively; the share of renewable and nonrenewable energy was 99.19 and 0.81%, respectively. Wheat input had the largest share of environmental indicators in flour production. The normalization step showed that the most important environmental indicator was marine water ecotoxicity (1.53×105 kg 1.4 DB eq/ton) followed by terrestrial ecotoxicity (36.59×105 kg 1.4 DB eq/ton), eutrophication (5.83kg PO4 eq/ton), and acidification potential (6.57kg SO2 eq/ton) indicator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical analysis of tropospheric ozone and its precursors using principal component analysis in an urban area of Surat, India The effects of different materials of green roofing on the quantity and quality of stored and drainage water by using simulated rainfall setup The CO2 removal of flue gas using hollow fiber membrane contactor: a comprehensive modeling and new perspectives Social Cost of CO2 emissions in Tehran Waste Management Scenarios and select the scenario based on least impact on Global Warming by using Life Cycle Assessment Surface Ignition Using Ethanol on Mo and Al2O3-TiO2 Coated in CI Engine for Environmental Benefits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1