用交替方向乘法器估计损失相量测量单元数据

Mang Liao, Di Shi, Zhe Yu, Wendong Zhu, Zhiwei Wang, Yingmeng Xiang
{"title":"用交替方向乘法器估计损失相量测量单元数据","authors":"Mang Liao, Di Shi, Zhe Yu, Wendong Zhu, Zhiwei Wang, Yingmeng Xiang","doi":"10.1109/TDC.2018.8440469","DOIUrl":null,"url":null,"abstract":"This paper presents a novel algorithm for recovering missing data of phasor measurement units (PMUs). Due to the low-rank property of PMU data, missing measurement estimation can be formulated as a low-rank matrix-completion problem. Based on maximum-margin matrix factorization, we propose an efficient algorithm based on alternating direction method of multipliers (ADMM) for solving the matrix completion problem. Comparing to existing approaches, the proposed ADMM based algorithm does not need to estimate the rank of the target data matrix and provides better performance in computation complexity. In addition, we consider the case of measurements missing from all PMU channels and provide a strategy of reshaping the matrix which contains the received PMU data for estimation. Numerical results using PMU measurements from IEEE 68-bus power system model illustrate the effectiveness and efficiency of the proposed approaches.","PeriodicalId":6568,"journal":{"name":"2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","volume":"1 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Estimate the Lost Phasor Measurement Unit Data Using Alternating Direction Multipliers Method\",\"authors\":\"Mang Liao, Di Shi, Zhe Yu, Wendong Zhu, Zhiwei Wang, Yingmeng Xiang\",\"doi\":\"10.1109/TDC.2018.8440469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel algorithm for recovering missing data of phasor measurement units (PMUs). Due to the low-rank property of PMU data, missing measurement estimation can be formulated as a low-rank matrix-completion problem. Based on maximum-margin matrix factorization, we propose an efficient algorithm based on alternating direction method of multipliers (ADMM) for solving the matrix completion problem. Comparing to existing approaches, the proposed ADMM based algorithm does not need to estimate the rank of the target data matrix and provides better performance in computation complexity. In addition, we consider the case of measurements missing from all PMU channels and provide a strategy of reshaping the matrix which contains the received PMU data for estimation. Numerical results using PMU measurements from IEEE 68-bus power system model illustrate the effectiveness and efficiency of the proposed approaches.\",\"PeriodicalId\":6568,\"journal\":{\"name\":\"2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)\",\"volume\":\"1 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TDC.2018.8440469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDC.2018.8440469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

提出了一种恢复相量测量单元缺失数据的新算法。由于PMU数据的低秩性,缺失测量估计可以表述为一个低秩矩阵补全问题。基于最大边际矩阵分解,提出了一种基于交替方向乘法器(ADMM)的矩阵补全算法。与现有算法相比,该算法不需要估计目标数据矩阵的秩,在计算复杂度方面具有更好的性能。此外,我们考虑了所有PMU通道中测量缺失的情况,并提供了一种重构矩阵的策略,该矩阵包含接收到的PMU数据用于估计。采用IEEE 68总线电力系统模型的PMU测量结果表明了所提方法的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimate the Lost Phasor Measurement Unit Data Using Alternating Direction Multipliers Method
This paper presents a novel algorithm for recovering missing data of phasor measurement units (PMUs). Due to the low-rank property of PMU data, missing measurement estimation can be formulated as a low-rank matrix-completion problem. Based on maximum-margin matrix factorization, we propose an efficient algorithm based on alternating direction method of multipliers (ADMM) for solving the matrix completion problem. Comparing to existing approaches, the proposed ADMM based algorithm does not need to estimate the rank of the target data matrix and provides better performance in computation complexity. In addition, we consider the case of measurements missing from all PMU channels and provide a strategy of reshaping the matrix which contains the received PMU data for estimation. Numerical results using PMU measurements from IEEE 68-bus power system model illustrate the effectiveness and efficiency of the proposed approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Patterns in Failure Rate of LV Distribution Components Comparison of University Departments Regarding Their Area and Load Profile of an Existing Campus Design of a Flexible AC/DC-Link Aggregate Protection Response of Motor Loads in Commercial Buildings Hardware-in-the-Loop Test Bed and Test Methodology for Microgrid Controller Evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1