基于超声成像的深度神经网络静音语音交互

N. Kimura, Michinari Kono, J. Rekimoto
{"title":"基于超声成像的深度神经网络静音语音交互","authors":"N. Kimura, Michinari Kono, J. Rekimoto","doi":"10.1145/3290605.3300376","DOIUrl":null,"url":null,"abstract":"The availability of digital devices operated by voice is expanding rapidly. However, the applications of voice interfaces are still restricted. For example, speaking in public places becomes an annoyance to the surrounding people, and secret information should not be uttered. Environmental noise may reduce the accuracy of speech recognition. To address these limitations, a system to detect a user's unvoiced utterance is proposed. From internal information observed by an ultrasonic imaging sensor attached to the underside of the jaw, our proposed system recognizes the utterance contents without the user's uttering voice. Our proposed deep neural network model is used to obtain acoustic features from a sequence of ultrasound images. We confirmed that audio signals generated by our system can control the existing smart speakers. We also observed that a user can adjust their oral movement to learn and improve the accuracy of their voice recognition.","PeriodicalId":20454,"journal":{"name":"Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":"{\"title\":\"SottoVoce: An Ultrasound Imaging-Based Silent Speech Interaction Using Deep Neural Networks\",\"authors\":\"N. Kimura, Michinari Kono, J. Rekimoto\",\"doi\":\"10.1145/3290605.3300376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The availability of digital devices operated by voice is expanding rapidly. However, the applications of voice interfaces are still restricted. For example, speaking in public places becomes an annoyance to the surrounding people, and secret information should not be uttered. Environmental noise may reduce the accuracy of speech recognition. To address these limitations, a system to detect a user's unvoiced utterance is proposed. From internal information observed by an ultrasonic imaging sensor attached to the underside of the jaw, our proposed system recognizes the utterance contents without the user's uttering voice. Our proposed deep neural network model is used to obtain acoustic features from a sequence of ultrasound images. We confirmed that audio signals generated by our system can control the existing smart speakers. We also observed that a user can adjust their oral movement to learn and improve the accuracy of their voice recognition.\",\"PeriodicalId\":20454,\"journal\":{\"name\":\"Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"87\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3290605.3300376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3290605.3300376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 87

摘要

通过语音操作的数字设备的可用性正在迅速扩大。然而,语音接口的应用仍然受到限制。例如,在公共场合讲话会让周围的人感到厌烦,不应该说出秘密信息。环境噪声会降低语音识别的准确性。为了解决这些限制,提出了一种检测用户未发音话语的系统。通过安装在下颚下方的超声波成像传感器观察到的内部信息,我们提出的系统可以在用户不发出声音的情况下识别话语内容。我们提出的深度神经网络模型用于从一系列超声图像中获取声学特征。我们确认系统产生的音频信号可以控制现有的智能音箱。我们还观察到,用户可以调整他们的口腔运动来学习和提高他们语音识别的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SottoVoce: An Ultrasound Imaging-Based Silent Speech Interaction Using Deep Neural Networks
The availability of digital devices operated by voice is expanding rapidly. However, the applications of voice interfaces are still restricted. For example, speaking in public places becomes an annoyance to the surrounding people, and secret information should not be uttered. Environmental noise may reduce the accuracy of speech recognition. To address these limitations, a system to detect a user's unvoiced utterance is proposed. From internal information observed by an ultrasonic imaging sensor attached to the underside of the jaw, our proposed system recognizes the utterance contents without the user's uttering voice. Our proposed deep neural network model is used to obtain acoustic features from a sequence of ultrasound images. We confirmed that audio signals generated by our system can control the existing smart speakers. We also observed that a user can adjust their oral movement to learn and improve the accuracy of their voice recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HAExplorer Influencers in Multiplayer Online Shooters: Evidence of Social Contagion in Playtime and Social Play SeeingVR Trigger-Action Programming for Personalising Humanoid Robot Behaviour "Pretty Close to a Must-Have": Balancing Usability Desire and Security Concern in Biometric Adoption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1