I. Michaljaničová, P. Slepička, M. Veselý, V. Svorcik
{"title":"组织工程中等离子体处理在聚合物基底上高效构建纳米结构","authors":"I. Michaljaničová, P. Slepička, M. Veselý, V. Svorcik","doi":"10.1109/NANO.2016.7751380","DOIUrl":null,"url":null,"abstract":"Nanostructured polymers assume an important role in many applications, especially if they are prepared by an economical and effective process. The aim of this work is the construction and characterization of new surface structures induced by an inexpensive and easy method with a potential application in tissue engineering. Diverse surface structures and patterns on several polymer substrates were created by oxygen and argon plasma modification, while maintaining the identical properties of the bulk. The study was conducted on the foils of the following polymers: polyetheretherketone (PEEK), polyethersulfone (PES), polyhydroxybutyrate (PHB) and polymethylpentene (PMP). The shape and size of created structures are related to the choice of the treated polymer, applied plasma power, time exposure, and working atmosphere. The AFM and FIB-SEM images declare that the most interesting surface patterns were created on PMP and PHB by the longest time exposure (240 s). Goniometric measurement was also included and discussed.","PeriodicalId":6646,"journal":{"name":"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)","volume":"1 1","pages":"149-152"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient nanostructure construction on polymer substrates by plasma treatment for tissue engineering\",\"authors\":\"I. Michaljaničová, P. Slepička, M. Veselý, V. Svorcik\",\"doi\":\"10.1109/NANO.2016.7751380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanostructured polymers assume an important role in many applications, especially if they are prepared by an economical and effective process. The aim of this work is the construction and characterization of new surface structures induced by an inexpensive and easy method with a potential application in tissue engineering. Diverse surface structures and patterns on several polymer substrates were created by oxygen and argon plasma modification, while maintaining the identical properties of the bulk. The study was conducted on the foils of the following polymers: polyetheretherketone (PEEK), polyethersulfone (PES), polyhydroxybutyrate (PHB) and polymethylpentene (PMP). The shape and size of created structures are related to the choice of the treated polymer, applied plasma power, time exposure, and working atmosphere. The AFM and FIB-SEM images declare that the most interesting surface patterns were created on PMP and PHB by the longest time exposure (240 s). Goniometric measurement was also included and discussed.\",\"PeriodicalId\":6646,\"journal\":{\"name\":\"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)\",\"volume\":\"1 1\",\"pages\":\"149-152\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2016.7751380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2016.7751380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient nanostructure construction on polymer substrates by plasma treatment for tissue engineering
Nanostructured polymers assume an important role in many applications, especially if they are prepared by an economical and effective process. The aim of this work is the construction and characterization of new surface structures induced by an inexpensive and easy method with a potential application in tissue engineering. Diverse surface structures and patterns on several polymer substrates were created by oxygen and argon plasma modification, while maintaining the identical properties of the bulk. The study was conducted on the foils of the following polymers: polyetheretherketone (PEEK), polyethersulfone (PES), polyhydroxybutyrate (PHB) and polymethylpentene (PMP). The shape and size of created structures are related to the choice of the treated polymer, applied plasma power, time exposure, and working atmosphere. The AFM and FIB-SEM images declare that the most interesting surface patterns were created on PMP and PHB by the longest time exposure (240 s). Goniometric measurement was also included and discussed.