{"title":"金属有机框架定制钙钛矿太阳能电池","authors":"Peng Chen, Jingwei Hou, Lianzhou Wang","doi":"10.20517/microstructures.2022.05","DOIUrl":null,"url":null,"abstract":"Metal-organic frameworks (MOFs) with tailorable structures and building blocks have demonstrated their advantages in improving the long-term stability of perovskite solar cells (PSCs). However, the inferior conductivity of MOFs and their lack of strong chemical interaction with perovskites cause undesirable interfacial charge carrier recombination and then deteriorate the photovoltaic (PV) performance of PSCs. This perspective offers an insightful overview of the versatile functionalities and key merits of MOFs for stabilizing PSCs under various external stimuli in terms of MOF interlayers and MOF-perovskite heterostructures. To tackle the charge transport problem of MOFs, promising strategies are outlined to improve the intrinsic conductivity and chemical coordination of MOFs, with the aim of achieving long-term stable PSCs without compromising their PV performance. The current challenging issues and potential solutions are also discussed to provide a roadmap for MOF-tailored PSCs towards practical applications.","PeriodicalId":22044,"journal":{"name":"Superlattices and Microstructures","volume":"1 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Metal-organic framework-tailored perovskite solar cells\",\"authors\":\"Peng Chen, Jingwei Hou, Lianzhou Wang\",\"doi\":\"10.20517/microstructures.2022.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal-organic frameworks (MOFs) with tailorable structures and building blocks have demonstrated their advantages in improving the long-term stability of perovskite solar cells (PSCs). However, the inferior conductivity of MOFs and their lack of strong chemical interaction with perovskites cause undesirable interfacial charge carrier recombination and then deteriorate the photovoltaic (PV) performance of PSCs. This perspective offers an insightful overview of the versatile functionalities and key merits of MOFs for stabilizing PSCs under various external stimuli in terms of MOF interlayers and MOF-perovskite heterostructures. To tackle the charge transport problem of MOFs, promising strategies are outlined to improve the intrinsic conductivity and chemical coordination of MOFs, with the aim of achieving long-term stable PSCs without compromising their PV performance. The current challenging issues and potential solutions are also discussed to provide a roadmap for MOF-tailored PSCs towards practical applications.\",\"PeriodicalId\":22044,\"journal\":{\"name\":\"Superlattices and Microstructures\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Superlattices and Microstructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.20517/microstructures.2022.05\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superlattices and Microstructures","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.20517/microstructures.2022.05","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Metal-organic framework-tailored perovskite solar cells
Metal-organic frameworks (MOFs) with tailorable structures and building blocks have demonstrated their advantages in improving the long-term stability of perovskite solar cells (PSCs). However, the inferior conductivity of MOFs and their lack of strong chemical interaction with perovskites cause undesirable interfacial charge carrier recombination and then deteriorate the photovoltaic (PV) performance of PSCs. This perspective offers an insightful overview of the versatile functionalities and key merits of MOFs for stabilizing PSCs under various external stimuli in terms of MOF interlayers and MOF-perovskite heterostructures. To tackle the charge transport problem of MOFs, promising strategies are outlined to improve the intrinsic conductivity and chemical coordination of MOFs, with the aim of achieving long-term stable PSCs without compromising their PV performance. The current challenging issues and potential solutions are also discussed to provide a roadmap for MOF-tailored PSCs towards practical applications.
期刊介绍:
Micro and Nanostructures is a journal disseminating the science and technology of micro-structures and nano-structures in materials and their devices, including individual and collective use of semiconductors, metals and insulators for the exploitation of their unique properties. The journal hosts papers dealing with fundamental and applied experimental research as well as theoretical studies. Fields of interest, including emerging ones, cover:
• Novel micro and nanostructures
• Nanomaterials (nanowires, nanodots, 2D materials ) and devices
• Synthetic heterostructures
• Plasmonics
• Micro and nano-defects in materials (semiconductor, metal and insulators)
• Surfaces and interfaces of thin films
In addition to Research Papers, the journal aims at publishing Topical Reviews providing insights into rapidly evolving or more mature fields. Written by leading researchers in their respective fields, those articles are commissioned by the Editorial Board.
Formerly known as Superlattices and Microstructures, with a 2021 IF of 3.22 and 2021 CiteScore of 5.4