光伏发电多传感器信息融合监测系统

Xiao Wang, Bo Zhao, Shengxian Cao, Siyuan Fan
{"title":"光伏发电多传感器信息融合监测系统","authors":"Xiao Wang, Bo Zhao, Shengxian Cao, Siyuan Fan","doi":"10.1109/cvidliccea56201.2022.9824758","DOIUrl":null,"url":null,"abstract":"In this paper, a novel multi-sensor information fusion (MSIF) monitoring system of photovoltaic (PV) power station is proposed, which can solve the difficulty in determining the dust accumulation degree of PV power station operation and maintenance personnel to the panels. According to the real-time monitoring data, a relationship model can be established to reflect the effect of dust accumulation on PV panels operating state. Meanwhile, a dust detection and classification method based on convolutional neural network (CNN) is also given to analyze the visible-light images and operation data. Because of identifying rapidly the images of the dust-covered PV panels, the classification result can be used as a guideline for cleaning the dust accumulation of PV panels. Finally, the experimental results show the effectiveness of the proposed monitoring system.","PeriodicalId":23649,"journal":{"name":"Vision","volume":"45 1","pages":"955-959"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-sensor information fusion monitoring system for photovoltaic power generation\",\"authors\":\"Xiao Wang, Bo Zhao, Shengxian Cao, Siyuan Fan\",\"doi\":\"10.1109/cvidliccea56201.2022.9824758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel multi-sensor information fusion (MSIF) monitoring system of photovoltaic (PV) power station is proposed, which can solve the difficulty in determining the dust accumulation degree of PV power station operation and maintenance personnel to the panels. According to the real-time monitoring data, a relationship model can be established to reflect the effect of dust accumulation on PV panels operating state. Meanwhile, a dust detection and classification method based on convolutional neural network (CNN) is also given to analyze the visible-light images and operation data. Because of identifying rapidly the images of the dust-covered PV panels, the classification result can be used as a guideline for cleaning the dust accumulation of PV panels. Finally, the experimental results show the effectiveness of the proposed monitoring system.\",\"PeriodicalId\":23649,\"journal\":{\"name\":\"Vision\",\"volume\":\"45 1\",\"pages\":\"955-959\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/cvidliccea56201.2022.9824758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvidliccea56201.2022.9824758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新型的光伏电站多传感器信息融合(MSIF)监测系统,解决了光伏电站运维人员对面板积尘程度难以确定的问题。根据实时监测数据,可以建立反映积尘对光伏板运行状态影响的关系模型。同时,提出了一种基于卷积神经网络(CNN)的粉尘检测分类方法,对可见光图像和运行数据进行分析。由于可以快速识别光伏板上的灰尘图像,因此分类结果可以作为清洁光伏板上积尘的指导方针。最后,实验结果表明了所提出的监测系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A multi-sensor information fusion monitoring system for photovoltaic power generation
In this paper, a novel multi-sensor information fusion (MSIF) monitoring system of photovoltaic (PV) power station is proposed, which can solve the difficulty in determining the dust accumulation degree of PV power station operation and maintenance personnel to the panels. According to the real-time monitoring data, a relationship model can be established to reflect the effect of dust accumulation on PV panels operating state. Meanwhile, a dust detection and classification method based on convolutional neural network (CNN) is also given to analyze the visible-light images and operation data. Because of identifying rapidly the images of the dust-covered PV panels, the classification result can be used as a guideline for cleaning the dust accumulation of PV panels. Finally, the experimental results show the effectiveness of the proposed monitoring system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of Eye Axial Length Measurements Taken Using Partial Coherence Interferometry and OCT Biometry The Effect of the Zonular Fiber Angle of Insertion on Accommodation Perceptual Biases in the Interpretation of Non-Rigid Shape Transformations from Motion A New Model of a Macular Buckle and a Refined Surgical Technique for the Treatment of Myopic Traction Maculopathy Eyes on Memory: Pupillometry in Encoding and Retrieval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1