被假零损坏的稀疏多路计数数据的零截断泊松回归

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED Information and Inference-A Journal of the Ima Pub Date : 2022-01-25 DOI:10.1093/imaiai/iaad016
Oscar L'opez, Daniel M. Dunlavy, R. Lehoucq
{"title":"被假零损坏的稀疏多路计数数据的零截断泊松回归","authors":"Oscar L'opez, Daniel M. Dunlavy, R. Lehoucq","doi":"10.1093/imaiai/iaad016","DOIUrl":null,"url":null,"abstract":"\n We propose a novel statistical inference methodology for multiway count data that is corrupted by false zeros that are indistinguishable from true zero counts. Our approach consists of zero-truncating the Poisson distribution to neglect all zero values. This simple truncated approach dispenses with the need to distinguish between true and false zero counts and reduces the amount of data to be processed. Inference is accomplished via tensor completion that imposes low-rank tensor structure on the Poisson parameter space. Our main result shows that an $N$-way rank-$R$ parametric tensor $\\boldsymbol{\\mathscr{M}}\\in (0,\\infty )^{I\\times \\cdots \\times I}$ generating Poisson observations can be accurately estimated by zero-truncated Poisson regression from approximately $IR^2\\log _2^2(I)$ non-zero counts under the nonnegative canonical polyadic decomposition. Our result also quantifies the error made by zero-truncating the Poisson distribution when the parameter is uniformly bounded from below. Therefore, under a low-rank multiparameter model, we propose an implementable approach guaranteed to achieve accurate regression in under-determined scenarios with substantial corruption by false zeros. Several numerical experiments are presented to explore the theoretical results.","PeriodicalId":45437,"journal":{"name":"Information and Inference-A Journal of the Ima","volume":"14 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Zero-truncated Poisson regression for sparse multiway count data corrupted by false zeros\",\"authors\":\"Oscar L'opez, Daniel M. Dunlavy, R. Lehoucq\",\"doi\":\"10.1093/imaiai/iaad016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We propose a novel statistical inference methodology for multiway count data that is corrupted by false zeros that are indistinguishable from true zero counts. Our approach consists of zero-truncating the Poisson distribution to neglect all zero values. This simple truncated approach dispenses with the need to distinguish between true and false zero counts and reduces the amount of data to be processed. Inference is accomplished via tensor completion that imposes low-rank tensor structure on the Poisson parameter space. Our main result shows that an $N$-way rank-$R$ parametric tensor $\\\\boldsymbol{\\\\mathscr{M}}\\\\in (0,\\\\infty )^{I\\\\times \\\\cdots \\\\times I}$ generating Poisson observations can be accurately estimated by zero-truncated Poisson regression from approximately $IR^2\\\\log _2^2(I)$ non-zero counts under the nonnegative canonical polyadic decomposition. Our result also quantifies the error made by zero-truncating the Poisson distribution when the parameter is uniformly bounded from below. Therefore, under a low-rank multiparameter model, we propose an implementable approach guaranteed to achieve accurate regression in under-determined scenarios with substantial corruption by false zeros. Several numerical experiments are presented to explore the theoretical results.\",\"PeriodicalId\":45437,\"journal\":{\"name\":\"Information and Inference-A Journal of the Ima\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Inference-A Journal of the Ima\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imaiai/iaad016\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Inference-A Journal of the Ima","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imaiai/iaad016","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种新的统计推断方法,用于多路计数数据,这些数据被假零损坏,与真零计数无法区分。我们的方法包括对泊松分布进行零截断以忽略所有零值。这种简单的截断方法不需要区分真零计数和假零计数,并减少了要处理的数据量。推理是通过张量补全来完成的,它在泊松参数空间上施加了低秩张量结构。我们的主要结果表明 $N$-路阶-$R$ 参数张量 $\boldsymbol{\mathscr{M}}\in (0,\infty )^{I\times \cdots \times I}$ 通过零截断泊松回归可以精确地估计泊松观测值的产生 $IR^2\log _2^2(I)$ 非负正则多进分解下的非零计数。我们的结果还量化了当参数从下面均匀有界时,对泊松分布进行零截断所产生的误差。因此,在低秩多参数模型下,我们提出了一种可实现的方法,保证在假零严重破坏的欠确定场景下实现准确的回归。通过几个数值实验来验证理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Zero-truncated Poisson regression for sparse multiway count data corrupted by false zeros
We propose a novel statistical inference methodology for multiway count data that is corrupted by false zeros that are indistinguishable from true zero counts. Our approach consists of zero-truncating the Poisson distribution to neglect all zero values. This simple truncated approach dispenses with the need to distinguish between true and false zero counts and reduces the amount of data to be processed. Inference is accomplished via tensor completion that imposes low-rank tensor structure on the Poisson parameter space. Our main result shows that an $N$-way rank-$R$ parametric tensor $\boldsymbol{\mathscr{M}}\in (0,\infty )^{I\times \cdots \times I}$ generating Poisson observations can be accurately estimated by zero-truncated Poisson regression from approximately $IR^2\log _2^2(I)$ non-zero counts under the nonnegative canonical polyadic decomposition. Our result also quantifies the error made by zero-truncating the Poisson distribution when the parameter is uniformly bounded from below. Therefore, under a low-rank multiparameter model, we propose an implementable approach guaranteed to achieve accurate regression in under-determined scenarios with substantial corruption by false zeros. Several numerical experiments are presented to explore the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
28
期刊最新文献
The Dyson equalizer: adaptive noise stabilization for low-rank signal detection and recovery. Bi-stochastically normalized graph Laplacian: convergence to manifold Laplacian and robustness to outlier noise. Phase transition and higher order analysis of Lq regularization under dependence. On statistical inference with high-dimensional sparse CCA. Black-box tests for algorithmic stability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1