基于多云平台的工作负载调度资源利用最大化的蜻蜓软计算方法

IF 1 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal on Information Technologies and Security Pub Date : 2023-03-01 DOI:10.59035/mbul3714
Arundhati Nelli, R. Jogdand
{"title":"基于多云平台的工作负载调度资源利用最大化的蜻蜓软计算方法","authors":"Arundhati Nelli, R. Jogdand","doi":"10.59035/mbul3714","DOIUrl":null,"url":null,"abstract":"The execution of the real-time workload in the multi-cloud platform with the Service Level Agreement (SLA) requirements is a challenging task. Existing workload scheduling models have addressed issues related to minimizing execution time, cost, and energy with application reliability prerequisite. However, these models are not efficient in maximizing resource utilization under a multi-cloud platform. In addressing resource utilization issues, this paper presents a Workload Scheduling Resource Utilization Maximization (WS-RUM) technique for the multi-cloud platform. The WS-RUM technique leverages a multi-objective such as energy, processing efficiency, and fault-tolerant offloading mechanism employing a dragonfly soft computing algorithm. The WS-RUM improves resource utilization by minimizing both energy and processing time for real-time workload execution in comparison with existing workload execution.","PeriodicalId":42317,"journal":{"name":"International Journal on Information Technologies and Security","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dragonfly soft-computing approach for workload scheduling resource utilization maximization using multi-cloud platform\",\"authors\":\"Arundhati Nelli, R. Jogdand\",\"doi\":\"10.59035/mbul3714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The execution of the real-time workload in the multi-cloud platform with the Service Level Agreement (SLA) requirements is a challenging task. Existing workload scheduling models have addressed issues related to minimizing execution time, cost, and energy with application reliability prerequisite. However, these models are not efficient in maximizing resource utilization under a multi-cloud platform. In addressing resource utilization issues, this paper presents a Workload Scheduling Resource Utilization Maximization (WS-RUM) technique for the multi-cloud platform. The WS-RUM technique leverages a multi-objective such as energy, processing efficiency, and fault-tolerant offloading mechanism employing a dragonfly soft computing algorithm. The WS-RUM improves resource utilization by minimizing both energy and processing time for real-time workload execution in comparison with existing workload execution.\",\"PeriodicalId\":42317,\"journal\":{\"name\":\"International Journal on Information Technologies and Security\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Information Technologies and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59035/mbul3714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Information Technologies and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59035/mbul3714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在具有服务水平协议(SLA)需求的多云平台中执行实时工作负载是一项具有挑战性的任务。现有的工作负载调度模型已经解决了在应用程序可靠性前提下最小化执行时间、成本和精力的相关问题。然而,在多云平台下,这些模型在最大化资源利用方面效率不高。为了解决资源利用问题,本文提出了一种用于多云平台的工作负载调度资源利用最大化(WS-RUM)技术。WS-RUM技术利用多目标,如能源、处理效率和容错卸载机制,采用蜻蜓软计算算法。与现有工作负载执行相比,WS-RUM通过最小化实时工作负载执行的能量和处理时间来提高资源利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dragonfly soft-computing approach for workload scheduling resource utilization maximization using multi-cloud platform
The execution of the real-time workload in the multi-cloud platform with the Service Level Agreement (SLA) requirements is a challenging task. Existing workload scheduling models have addressed issues related to minimizing execution time, cost, and energy with application reliability prerequisite. However, these models are not efficient in maximizing resource utilization under a multi-cloud platform. In addressing resource utilization issues, this paper presents a Workload Scheduling Resource Utilization Maximization (WS-RUM) technique for the multi-cloud platform. The WS-RUM technique leverages a multi-objective such as energy, processing efficiency, and fault-tolerant offloading mechanism employing a dragonfly soft computing algorithm. The WS-RUM improves resource utilization by minimizing both energy and processing time for real-time workload execution in comparison with existing workload execution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
66.70%
发文量
0
期刊最新文献
Low-Traffic Aware Hybrid MAC (LTH-MAC) Protocol for Wireless Sensor Networks Development of a neural network model of an intelligent monitoring agent based on a recurrent neural network with a long chain of short-term memory elements A smart parking system combining IoT and AI to address improper parking Kali Linux – a simple and effective way to study the level of cyber security and penetration testing of power electronic devices Enhancing autism severity prediction: A fusion of convolutional neural networks and random forest model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1