获取增材制造材料的孔隙微观结构-性能关系

Q1 Mathematics GAMM Mitteilungen Pub Date : 2021-08-08 DOI:10.1002/gamm.202100012
Alexander Raßloff, Paul Schulz, Robert Kühne, Marreddy Ambati, Ilja Koch, André T. Zeuner, Maik Gude, Martina Zimmermann, Markus Kästner
{"title":"获取增材制造材料的孔隙微观结构-性能关系","authors":"Alexander Raßloff,&nbsp;Paul Schulz,&nbsp;Robert Kühne,&nbsp;Marreddy Ambati,&nbsp;Ilja Koch,&nbsp;André T. Zeuner,&nbsp;Maik Gude,&nbsp;Martina Zimmermann,&nbsp;Markus Kästner","doi":"10.1002/gamm.202100012","DOIUrl":null,"url":null,"abstract":"<p>Understanding structure–property (SP) relationships is essential for accelerating materials innovation. Still being in the state of ongoing research and development, this is especially true for additive manufacturing (AM) in which process-induced imperfections like pores and microstructural variations significantly influence the material's properties. That is why, the present work aims at proposing an approach for accessing pore SP relationships for AM materials. For this purpose, crystal plasticity (CP) simulations on reconstructed domains based on experimental measurements are employed to allow for a microstructure-sensitive investigation. For the considered Ti–6Al–4V specimen manufactured by laser powder bed fusion, the microstructure and pore characteristics are obtained by utilizing light microscopy and X-ray computed tomography at the microscale. Employing suitable statistical analysis and reconstruction, statistical volume elements with reconstructed pore distributions are created. Using them, microscale CP simulations are performed to obtain fatigue indicating parameters. Employing a further statistical analysis, fatigue ranking parameters are derived for a comparison of different microstructures. Additionally, a comparison with the empirical <span>Murakami</span>'s square root area concept is made. Results from first numerical studies underline the potential of the approach for understanding and improving AM materials.</p>","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"44 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/gamm.202100012","citationCount":"7","resultStr":"{\"title\":\"Accessing pore microstructure–property relationships for additively manufactured materials\",\"authors\":\"Alexander Raßloff,&nbsp;Paul Schulz,&nbsp;Robert Kühne,&nbsp;Marreddy Ambati,&nbsp;Ilja Koch,&nbsp;André T. Zeuner,&nbsp;Maik Gude,&nbsp;Martina Zimmermann,&nbsp;Markus Kästner\",\"doi\":\"10.1002/gamm.202100012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Understanding structure–property (SP) relationships is essential for accelerating materials innovation. Still being in the state of ongoing research and development, this is especially true for additive manufacturing (AM) in which process-induced imperfections like pores and microstructural variations significantly influence the material's properties. That is why, the present work aims at proposing an approach for accessing pore SP relationships for AM materials. For this purpose, crystal plasticity (CP) simulations on reconstructed domains based on experimental measurements are employed to allow for a microstructure-sensitive investigation. For the considered Ti–6Al–4V specimen manufactured by laser powder bed fusion, the microstructure and pore characteristics are obtained by utilizing light microscopy and X-ray computed tomography at the microscale. Employing suitable statistical analysis and reconstruction, statistical volume elements with reconstructed pore distributions are created. Using them, microscale CP simulations are performed to obtain fatigue indicating parameters. Employing a further statistical analysis, fatigue ranking parameters are derived for a comparison of different microstructures. Additionally, a comparison with the empirical <span>Murakami</span>'s square root area concept is made. Results from first numerical studies underline the potential of the approach for understanding and improving AM materials.</p>\",\"PeriodicalId\":53634,\"journal\":{\"name\":\"GAMM Mitteilungen\",\"volume\":\"44 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/gamm.202100012\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GAMM Mitteilungen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gamm.202100012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GAMM Mitteilungen","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gamm.202100012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 7

摘要

理解结构-性能(SP)关系对于加速材料创新至关重要。目前,增材制造(AM)仍处于持续研究和开发的状态,尤其是在增材制造(AM)中,工艺引起的缺陷(如孔隙和微观结构变化)会显著影响材料的性能。这就是为什么,目前的工作旨在提出一种获取AM材料孔隙SP关系的方法。为此,在基于实验测量的重构域上进行晶体塑性(CP)模拟,以允许微观结构敏感的研究。对激光粉末床熔合制备的Ti-6Al-4V试样,利用光学显微镜和x射线计算机断层扫描技术在微观尺度上获得了微观结构和孔隙特征。通过适当的统计分析和重建,建立了具有重建孔隙分布的统计体积元。利用它们进行了微尺度CP模拟,获得了疲劳指示参数。通过进一步的统计分析,导出了疲劳等级参数,用于不同显微组织的比较。并与村上的平方根面积概念进行了实证比较。第一次数值研究的结果强调了理解和改进增材制造材料的方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accessing pore microstructure–property relationships for additively manufactured materials

Understanding structure–property (SP) relationships is essential for accelerating materials innovation. Still being in the state of ongoing research and development, this is especially true for additive manufacturing (AM) in which process-induced imperfections like pores and microstructural variations significantly influence the material's properties. That is why, the present work aims at proposing an approach for accessing pore SP relationships for AM materials. For this purpose, crystal plasticity (CP) simulations on reconstructed domains based on experimental measurements are employed to allow for a microstructure-sensitive investigation. For the considered Ti–6Al–4V specimen manufactured by laser powder bed fusion, the microstructure and pore characteristics are obtained by utilizing light microscopy and X-ray computed tomography at the microscale. Employing suitable statistical analysis and reconstruction, statistical volume elements with reconstructed pore distributions are created. Using them, microscale CP simulations are performed to obtain fatigue indicating parameters. Employing a further statistical analysis, fatigue ranking parameters are derived for a comparison of different microstructures. Additionally, a comparison with the empirical Murakami's square root area concept is made. Results from first numerical studies underline the potential of the approach for understanding and improving AM materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GAMM Mitteilungen
GAMM Mitteilungen Mathematics-Applied Mathematics
CiteScore
8.80
自引率
0.00%
发文量
23
期刊最新文献
Issue Information Regularizations of forward-backward parabolic PDEs Parallel two-scale finite element implementation of a system with varying microstructure Issue Information Low Mach number limit of a diffuse interface model for two-phase flows of compressible viscous fluids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1