65纳米CMOS脑机接口40 Gop/s/mm2定点算子

Erwan Libessart, M. Arzel, C. Lahuec, F. Andriulli
{"title":"65纳米CMOS脑机接口40 Gop/s/mm2定点算子","authors":"Erwan Libessart, M. Arzel, C. Lahuec, F. Andriulli","doi":"10.1109/ISCAS.2018.8351028","DOIUrl":null,"url":null,"abstract":"The performance of non-invasive Brain-Computer Interface (BCI) depends on the computing performance of the system which solves the inverse problem. So the number of basic operations computed per second determines the BCI's resolution. An architecture with pipelined and parallelized flow is then required, and each operator in this architecture must be optimised to reach the highest possible computing performance. This paper presents the implementation of a fixed-point reciprocal and an inverse square root operators for the STMicroelectronics 65 nm CMOS technology. This paper follows previous works that optimise these operators on FPGA target. Each operator reaches a computing performance of about 40 Gop/s/mm2, which improves the literature results by a factor of 5. Thus, this works fits well for portable and high performance BCI applications.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"95 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"40 Gop/s/mm2 fixed-point operators for Brain Computer Interface in 65 nm CMOS\",\"authors\":\"Erwan Libessart, M. Arzel, C. Lahuec, F. Andriulli\",\"doi\":\"10.1109/ISCAS.2018.8351028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of non-invasive Brain-Computer Interface (BCI) depends on the computing performance of the system which solves the inverse problem. So the number of basic operations computed per second determines the BCI's resolution. An architecture with pipelined and parallelized flow is then required, and each operator in this architecture must be optimised to reach the highest possible computing performance. This paper presents the implementation of a fixed-point reciprocal and an inverse square root operators for the STMicroelectronics 65 nm CMOS technology. This paper follows previous works that optimise these operators on FPGA target. Each operator reaches a computing performance of about 40 Gop/s/mm2, which improves the literature results by a factor of 5. Thus, this works fits well for portable and high performance BCI applications.\",\"PeriodicalId\":6569,\"journal\":{\"name\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"volume\":\"95 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2018.8351028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2018.8351028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无创脑机接口(BCI)的性能取决于解决逆问题的系统的计算性能。因此,每秒计算的基本操作的数量决定了BCI的分辨率。然后需要一个具有流水线和并行流的体系结构,并且必须优化该体系结构中的每个运算符以达到最高的计算性能。本文介绍了意法半导体65nm CMOS技术的定点倒数算子和平方根逆算子的实现。本文继承了前人在FPGA目标上对这些算子进行优化的工作。每个操作器的计算性能约为40 Gop/s/mm2,这比文献结果提高了5倍。因此,这种工作方式非常适合便携式高性能BCI应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
40 Gop/s/mm2 fixed-point operators for Brain Computer Interface in 65 nm CMOS
The performance of non-invasive Brain-Computer Interface (BCI) depends on the computing performance of the system which solves the inverse problem. So the number of basic operations computed per second determines the BCI's resolution. An architecture with pipelined and parallelized flow is then required, and each operator in this architecture must be optimised to reach the highest possible computing performance. This paper presents the implementation of a fixed-point reciprocal and an inverse square root operators for the STMicroelectronics 65 nm CMOS technology. This paper follows previous works that optimise these operators on FPGA target. Each operator reaches a computing performance of about 40 Gop/s/mm2, which improves the literature results by a factor of 5. Thus, this works fits well for portable and high performance BCI applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra-Low Power Wide-Dynamic-Range Universal Interface for Capacitive and Resistive Sensors An Energy-Efficient 13-bit Zero-Crossing ΔΣ Capacitance-to-Digital Converter with 1 pF-to-10 nF Sensing Range Power Optimized Comparator Selecting Method For Stochastic ADC Brain-inspired recurrent neural network with plastic RRAM synapses On the Use of Approximate Multipliers in LMS Adaptive Filters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1