印度南部高温高压致密气油田首次成功大规模水力压裂,释放4倍储层潜力

Vinit Sharma, A. Negi
{"title":"印度南部高温高压致密气油田首次成功大规模水力压裂,释放4倍储层潜力","authors":"Vinit Sharma, A. Negi","doi":"10.2118/194901-MS","DOIUrl":null,"url":null,"abstract":"\n Hydrocarbon production from high-pressure/high-temperature (HPHT) unconventional and tight gas reservoirs is challenging the industry with its increasing complexities, changing geological and reservoir dynamics with deeper depth and temperature, stimulation techniques and the strategic cost investment. The southern basins of India offers a complete set of such variability, uncertainties and challenges that demand a more synergic approach and effort to produce. Field X is a deep HPHT tight gas field in the Krishna Godavri Basin with a permeability of < 0.1 mD and a porosity of 10-12%.\n Prior attempts of hydraulic fracturing were carried out in the field with limited success. Small volume jobs were pumped, yielding low-permeability coverage, with just an initial production gain and no sustainability on the gas production increase. Frac fluid recovery was an additional concern because of the tight nature of the reservoir.\n This paper discusses the integration of log data, lab/fluid testing, production modelling, and fracture diagnostics that were used to design and optimize the massive hydraulic fracturing treatment. The technical methodology implemented during design, execution and evaluation phases for fracturing an HPHT tight gas well is discussed, including how the various risks were mitigated and the technical challenges were overcome. Finally, this paper elaborates the successful execution of the hydraulic fracturing treatment wherein ~332,000 lb of proppant were pumped–the largest in this field in a single stage. Initial production was enhanced by four times after the hydraulic fracturing. With the success of the hydraulic fracturing treatment execution strategy, fracturing operations were planned for the future field development wells to realize the true potential of the reservoir for increased and sustainable production.","PeriodicalId":10908,"journal":{"name":"Day 2 Tue, March 19, 2019","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First Successful Massive Hydraulic Fracturing Treatment Unlocks Reservoir Potential 4 Fold: Case Study from Tight Gas HPHT Field in Southern India\",\"authors\":\"Vinit Sharma, A. Negi\",\"doi\":\"10.2118/194901-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Hydrocarbon production from high-pressure/high-temperature (HPHT) unconventional and tight gas reservoirs is challenging the industry with its increasing complexities, changing geological and reservoir dynamics with deeper depth and temperature, stimulation techniques and the strategic cost investment. The southern basins of India offers a complete set of such variability, uncertainties and challenges that demand a more synergic approach and effort to produce. Field X is a deep HPHT tight gas field in the Krishna Godavri Basin with a permeability of < 0.1 mD and a porosity of 10-12%.\\n Prior attempts of hydraulic fracturing were carried out in the field with limited success. Small volume jobs were pumped, yielding low-permeability coverage, with just an initial production gain and no sustainability on the gas production increase. Frac fluid recovery was an additional concern because of the tight nature of the reservoir.\\n This paper discusses the integration of log data, lab/fluid testing, production modelling, and fracture diagnostics that were used to design and optimize the massive hydraulic fracturing treatment. The technical methodology implemented during design, execution and evaluation phases for fracturing an HPHT tight gas well is discussed, including how the various risks were mitigated and the technical challenges were overcome. Finally, this paper elaborates the successful execution of the hydraulic fracturing treatment wherein ~332,000 lb of proppant were pumped–the largest in this field in a single stage. Initial production was enhanced by four times after the hydraulic fracturing. With the success of the hydraulic fracturing treatment execution strategy, fracturing operations were planned for the future field development wells to realize the true potential of the reservoir for increased and sustainable production.\",\"PeriodicalId\":10908,\"journal\":{\"name\":\"Day 2 Tue, March 19, 2019\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, March 19, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/194901-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, March 19, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/194901-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高压/高温(HPHT)非常规气藏和致密气藏的油气开采日益复杂,地质和储层动态随着深度和温度的变化而变化,增产技术和战略成本投资也在不断变化,这对油气行业构成了挑战。印度南部盆地提供了一整套这样的可变性、不确定性和挑战,需要更协同的方法和努力来生产。X气田为Krishna Godavri盆地深部高温高压致密气田,渗透率< 0.1 mD,孔隙度为10-12%。之前在现场进行的水力压裂尝试取得了有限的成功。小批量作业,渗透率很低,只有最初的产量增加,而且天然气产量的增加没有可持续性。由于储层的致密性,压裂液的采收率是另一个问题。本文讨论了集成测井数据、实验室/流体测试、生产建模和裂缝诊断,用于设计和优化大规模水力压裂处理。讨论了高温高压致密气井压裂设计、施工和评估阶段所采用的技术方法,包括如何降低各种风险和克服技术挑战。最后,本文详细阐述了水力压裂处理的成功实施,其中泵入了约33.2万磅的支撑剂,这是该油田单级压裂中最大的支撑剂。水力压裂后,初期产量提高了4倍。随着水力压裂处理执行策略的成功,为未来的油田开发井制定了压裂作业计划,以实现储层的真正潜力,以增加和可持续生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
First Successful Massive Hydraulic Fracturing Treatment Unlocks Reservoir Potential 4 Fold: Case Study from Tight Gas HPHT Field in Southern India
Hydrocarbon production from high-pressure/high-temperature (HPHT) unconventional and tight gas reservoirs is challenging the industry with its increasing complexities, changing geological and reservoir dynamics with deeper depth and temperature, stimulation techniques and the strategic cost investment. The southern basins of India offers a complete set of such variability, uncertainties and challenges that demand a more synergic approach and effort to produce. Field X is a deep HPHT tight gas field in the Krishna Godavri Basin with a permeability of < 0.1 mD and a porosity of 10-12%. Prior attempts of hydraulic fracturing were carried out in the field with limited success. Small volume jobs were pumped, yielding low-permeability coverage, with just an initial production gain and no sustainability on the gas production increase. Frac fluid recovery was an additional concern because of the tight nature of the reservoir. This paper discusses the integration of log data, lab/fluid testing, production modelling, and fracture diagnostics that were used to design and optimize the massive hydraulic fracturing treatment. The technical methodology implemented during design, execution and evaluation phases for fracturing an HPHT tight gas well is discussed, including how the various risks were mitigated and the technical challenges were overcome. Finally, this paper elaborates the successful execution of the hydraulic fracturing treatment wherein ~332,000 lb of proppant were pumped–the largest in this field in a single stage. Initial production was enhanced by four times after the hydraulic fracturing. With the success of the hydraulic fracturing treatment execution strategy, fracturing operations were planned for the future field development wells to realize the true potential of the reservoir for increased and sustainable production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cost and Time Effective Stimulation Technique in Horizontal Cemented Liner Application in Carbonate Reservoir With HPCT Hydrajetting Tools Single Trip Multizone Perforation and Gravel Pack STPP: Success Story and Lessons Learned in Malaysian Application Machine Learning and the Analysis of High-Power Electromagnetic Interaction with Subsurface Matter Acoustic Properties of Carbonate: An Experimental and Modelling Study Application of Renewable Energy in the Oil and Gas Industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1