D. Udosen, Kundanji Kalengo, U. B. Akuru, O. Popoola, J. Munda
{"title":"非传统,非永磁风力发电机候选","authors":"D. Udosen, Kundanji Kalengo, U. B. Akuru, O. Popoola, J. Munda","doi":"10.3390/wind2030023","DOIUrl":null,"url":null,"abstract":"Global industrialization, population explosion and the advent of a technology-enabled society have placed dire constraints on energy resources. Furthermore, evident climatic concerns have placed boundaries on deployable energy options, compounding an already regrettable situation. It becomes apparent for modern renewable energy technologies, including wind generators, to possess qualities of robustness, high efficiency, and cost effectiveness. To this end, direct-drive permanent magnet (PM) wind generators, which eliminate the need for gearboxes and improve wind turbine drivetrain reliability, are trending. Though rare-earth PM-based wind generators possess the highly sought qualities of high-power density and high efficiency for direct-drive wind systems, the limited supply chain and expensive pricing of the vital raw materials, as well as existent demagnetization risks, make them unsustainable. This paper is used to provide an overview on alternative and viable non-conventional wind generators based on the so-called non-PM (wound-field) stator-mounted flux modulation machines, with prospects for competing with PM machine variants currently being used in the niche direct-drive wind power generation industry.","PeriodicalId":51210,"journal":{"name":"Wind and Structures","volume":"42 5 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Non-Conventional, Non-Permanent Magnet Wind Generator Candidates\",\"authors\":\"D. Udosen, Kundanji Kalengo, U. B. Akuru, O. Popoola, J. Munda\",\"doi\":\"10.3390/wind2030023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global industrialization, population explosion and the advent of a technology-enabled society have placed dire constraints on energy resources. Furthermore, evident climatic concerns have placed boundaries on deployable energy options, compounding an already regrettable situation. It becomes apparent for modern renewable energy technologies, including wind generators, to possess qualities of robustness, high efficiency, and cost effectiveness. To this end, direct-drive permanent magnet (PM) wind generators, which eliminate the need for gearboxes and improve wind turbine drivetrain reliability, are trending. Though rare-earth PM-based wind generators possess the highly sought qualities of high-power density and high efficiency for direct-drive wind systems, the limited supply chain and expensive pricing of the vital raw materials, as well as existent demagnetization risks, make them unsustainable. This paper is used to provide an overview on alternative and viable non-conventional wind generators based on the so-called non-PM (wound-field) stator-mounted flux modulation machines, with prospects for competing with PM machine variants currently being used in the niche direct-drive wind power generation industry.\",\"PeriodicalId\":51210,\"journal\":{\"name\":\"Wind and Structures\",\"volume\":\"42 5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wind and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/wind2030023\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/wind2030023","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Global industrialization, population explosion and the advent of a technology-enabled society have placed dire constraints on energy resources. Furthermore, evident climatic concerns have placed boundaries on deployable energy options, compounding an already regrettable situation. It becomes apparent for modern renewable energy technologies, including wind generators, to possess qualities of robustness, high efficiency, and cost effectiveness. To this end, direct-drive permanent magnet (PM) wind generators, which eliminate the need for gearboxes and improve wind turbine drivetrain reliability, are trending. Though rare-earth PM-based wind generators possess the highly sought qualities of high-power density and high efficiency for direct-drive wind systems, the limited supply chain and expensive pricing of the vital raw materials, as well as existent demagnetization risks, make them unsustainable. This paper is used to provide an overview on alternative and viable non-conventional wind generators based on the so-called non-PM (wound-field) stator-mounted flux modulation machines, with prospects for competing with PM machine variants currently being used in the niche direct-drive wind power generation industry.
期刊介绍:
The WIND AND STRUCTURES, An International Journal, aims at: - Major publication channel for research in the general area of wind and structural engineering, - Wider distribution at more affordable subscription rates; - Faster reviewing and publication for manuscripts submitted.
The main theme of the Journal is the wind effects on structures. Areas covered by the journal include:
Wind loads and structural response,
Bluff-body aerodynamics,
Computational method,
Wind tunnel modeling,
Local wind environment,
Codes and regulations,
Wind effects on large scale structures.