{"title":"基于多尺度快速RCNN的裂纹检测","authors":"Haiyong Chen, Zhao Peng, Haowei Yan","doi":"10.12086/OEE.2021.200112","DOIUrl":null,"url":null,"abstract":"The background of the EL image of a photovoltaic cell under electroluminescence (EL) presents complex non-uniform texture features, and there are grain pseudo-defects similar to cracks. At the same time, the cracks appear as multi-scale features with various shapes. The above mentioned difficulties have presented great chal-lenges for the detection task. Therefore, this paper proposes a multi-scale Faster-RCNN model that integrates at-tention. On the one hand, an improved feature pyramid network is used to obtain multi-scale advanced semantic feature maps to improve the network's feature expression ability of multi-scale crack defects. On the other hand, an improved attention region proposal network A-RPN is adopted to increase the model's attention to crack defects and suppress the characteristics of complex background and grain pseudo-defects. At the same time, in the RPN network training process, a loss function Focal loss is used to reduce the proportion of simple samples in the training process, so that the model pays more attention to the samples that are difficult to distinguish. Experimental results show that this algorithm improves the accuracy of crack defect detection in EL images, reaching nearly 95%.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":"1 1","pages":"200112"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Crack detection based on multi-scale Faster RCNN with attention\",\"authors\":\"Haiyong Chen, Zhao Peng, Haowei Yan\",\"doi\":\"10.12086/OEE.2021.200112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The background of the EL image of a photovoltaic cell under electroluminescence (EL) presents complex non-uniform texture features, and there are grain pseudo-defects similar to cracks. At the same time, the cracks appear as multi-scale features with various shapes. The above mentioned difficulties have presented great chal-lenges for the detection task. Therefore, this paper proposes a multi-scale Faster-RCNN model that integrates at-tention. On the one hand, an improved feature pyramid network is used to obtain multi-scale advanced semantic feature maps to improve the network's feature expression ability of multi-scale crack defects. On the other hand, an improved attention region proposal network A-RPN is adopted to increase the model's attention to crack defects and suppress the characteristics of complex background and grain pseudo-defects. At the same time, in the RPN network training process, a loss function Focal loss is used to reduce the proportion of simple samples in the training process, so that the model pays more attention to the samples that are difficult to distinguish. Experimental results show that this algorithm improves the accuracy of crack defect detection in EL images, reaching nearly 95%.\",\"PeriodicalId\":39552,\"journal\":{\"name\":\"光电工程\",\"volume\":\"1 1\",\"pages\":\"200112\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"光电工程\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.12086/OEE.2021.200112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2021.200112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Crack detection based on multi-scale Faster RCNN with attention
The background of the EL image of a photovoltaic cell under electroluminescence (EL) presents complex non-uniform texture features, and there are grain pseudo-defects similar to cracks. At the same time, the cracks appear as multi-scale features with various shapes. The above mentioned difficulties have presented great chal-lenges for the detection task. Therefore, this paper proposes a multi-scale Faster-RCNN model that integrates at-tention. On the one hand, an improved feature pyramid network is used to obtain multi-scale advanced semantic feature maps to improve the network's feature expression ability of multi-scale crack defects. On the other hand, an improved attention region proposal network A-RPN is adopted to increase the model's attention to crack defects and suppress the characteristics of complex background and grain pseudo-defects. At the same time, in the RPN network training process, a loss function Focal loss is used to reduce the proportion of simple samples in the training process, so that the model pays more attention to the samples that are difficult to distinguish. Experimental results show that this algorithm improves the accuracy of crack defect detection in EL images, reaching nearly 95%.
光电工程Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
0.00%
发文量
6622
期刊介绍:
Founded in 1974, Opto-Electronic Engineering is an academic journal under the supervision of the Chinese Academy of Sciences and co-sponsored by the Institute of Optoelectronic Technology of the Chinese Academy of Sciences (IOTC) and the Optical Society of China (OSC). It is a core journal in Chinese and a core journal in Chinese science and technology, and it is included in domestic and international databases, such as Scopus, CA, CSCD, CNKI, and Wanfang.
Opto-Electronic Engineering is a peer-reviewed journal with subject areas including not only the basic disciplines of optics and electricity, but also engineering research and engineering applications. Optoelectronic Engineering mainly publishes scientific research progress, original results and reviews in the field of optoelectronics, and publishes related topics for hot issues and frontier subjects.
The main directions of the journal include:
- Optical design and optical engineering
- Photovoltaic technology and applications
- Lasers, optical fibres and communications
- Optical materials and photonic devices
- Optical Signal Processing