利用酚功能化卟啉有机分子改进自供电gan基对称金属-半导体-金属紫外探测器

M. Garg, B. R. Tak, V. Rao, Rajendra Singh
{"title":"利用酚功能化卟啉有机分子改进自供电gan基对称金属-半导体-金属紫外探测器","authors":"M. Garg, B. R. Tak, V. Rao, Rajendra Singh","doi":"10.1109/icee44586.2018.8937959","DOIUrl":null,"url":null,"abstract":"Organic molecular monolayers have been used for improving the performance of various electronic device structures. In this work, the concept of organic molecular surface modification is applied for improving the performance and the self-power quality of GaN-based symmetric Metal-Semiconductor-Metal (MSM) Ultraviolet (UV) Photodetectors (PDs). Organic molecules of phenol-functionalized-metallated Porphyrin (Zn-TPPOH) have been adsorbed on GaN epitaxial layers and Ni/Zn-TPPOH/GaN/Zn-TPPOH/Ni PD structures have been fabricated. This process has led to decrease in reverse bias dark current by $\\sim10,000 times$ at 0V in comparison to the dark current values obtained for Ni/GaN/Ni MSM PDs. Photodetector parameters such as Photo-to-dark current ratio and Responsivity have increased from 8.8 and 0.004 A/W for Ni/GaN/Ni structures to $2.4 \\times10^{5}$ and 0.038 A/W for Ni/Zn-TPPOH/GaN/Zn-TPPOH/Ni structures, respectively at 0V. The spectral selectivity of the PDs has also improved at 0V, which means that the molecularly modified devices have become more responsive in UV spectral region and lesser in visible spectral region, if compared to bare-GaN based devices.","PeriodicalId":6590,"journal":{"name":"2018 4th IEEE International Conference on Emerging Electronics (ICEE)","volume":"7 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Improvement in Self-Powered GaN-based Symmetric Metal-Semiconductor-Metal Ultraviolet Photodetectors by Using Phenol-Functionalized Porphyrin Organic Molecules\",\"authors\":\"M. Garg, B. R. Tak, V. Rao, Rajendra Singh\",\"doi\":\"10.1109/icee44586.2018.8937959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organic molecular monolayers have been used for improving the performance of various electronic device structures. In this work, the concept of organic molecular surface modification is applied for improving the performance and the self-power quality of GaN-based symmetric Metal-Semiconductor-Metal (MSM) Ultraviolet (UV) Photodetectors (PDs). Organic molecules of phenol-functionalized-metallated Porphyrin (Zn-TPPOH) have been adsorbed on GaN epitaxial layers and Ni/Zn-TPPOH/GaN/Zn-TPPOH/Ni PD structures have been fabricated. This process has led to decrease in reverse bias dark current by $\\\\sim10,000 times$ at 0V in comparison to the dark current values obtained for Ni/GaN/Ni MSM PDs. Photodetector parameters such as Photo-to-dark current ratio and Responsivity have increased from 8.8 and 0.004 A/W for Ni/GaN/Ni structures to $2.4 \\\\times10^{5}$ and 0.038 A/W for Ni/Zn-TPPOH/GaN/Zn-TPPOH/Ni structures, respectively at 0V. The spectral selectivity of the PDs has also improved at 0V, which means that the molecularly modified devices have become more responsive in UV spectral region and lesser in visible spectral region, if compared to bare-GaN based devices.\",\"PeriodicalId\":6590,\"journal\":{\"name\":\"2018 4th IEEE International Conference on Emerging Electronics (ICEE)\",\"volume\":\"7 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 4th IEEE International Conference on Emerging Electronics (ICEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icee44586.2018.8937959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th IEEE International Conference on Emerging Electronics (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icee44586.2018.8937959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

有机分子单层膜已被用于改善各种电子器件结构的性能。在这项工作中,有机分子表面修饰的概念应用于提高氮化镓基对称金属-半导体-金属(MSM)紫外(UV)光电探测器(pd)的性能和自功率质量。将苯酚功能化金属卟啉(Zn-TPPOH)有机分子吸附在GaN外延层上,制备了Ni/Zn-TPPOH/GaN/Zn-TPPOH/Ni PD结构。与Ni/GaN/Ni MSM pd获得的暗电流值相比,该工艺导致反向偏置暗电流值在0V时降低了$ sim10,000倍。在0V下,Ni/GaN/Ni结构的光暗电流比和响应率分别从8.8和0.004 A/W提高到Ni/Zn-TPPOH/GaN/Zn-TPPOH/Ni结构的2.4 \times10^{5}美元和0.038 A/W。PDs的光谱选择性在0V时也得到了改善,这意味着与裸gan基器件相比,分子修饰器件在紫外光谱区域的响应性更高,而在可见光光谱区域的响应性更低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improvement in Self-Powered GaN-based Symmetric Metal-Semiconductor-Metal Ultraviolet Photodetectors by Using Phenol-Functionalized Porphyrin Organic Molecules
Organic molecular monolayers have been used for improving the performance of various electronic device structures. In this work, the concept of organic molecular surface modification is applied for improving the performance and the self-power quality of GaN-based symmetric Metal-Semiconductor-Metal (MSM) Ultraviolet (UV) Photodetectors (PDs). Organic molecules of phenol-functionalized-metallated Porphyrin (Zn-TPPOH) have been adsorbed on GaN epitaxial layers and Ni/Zn-TPPOH/GaN/Zn-TPPOH/Ni PD structures have been fabricated. This process has led to decrease in reverse bias dark current by $\sim10,000 times$ at 0V in comparison to the dark current values obtained for Ni/GaN/Ni MSM PDs. Photodetector parameters such as Photo-to-dark current ratio and Responsivity have increased from 8.8 and 0.004 A/W for Ni/GaN/Ni structures to $2.4 \times10^{5}$ and 0.038 A/W for Ni/Zn-TPPOH/GaN/Zn-TPPOH/Ni structures, respectively at 0V. The spectral selectivity of the PDs has also improved at 0V, which means that the molecularly modified devices have become more responsive in UV spectral region and lesser in visible spectral region, if compared to bare-GaN based devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comprehensive Computational Modelling Approach for Graphene FETs Thermoelectric Properties of CrI3 Monolayer A Simple Charge and Capacitance Compact Model for Asymmetric III-V DGFETs Using CCDA Selective dewetting of metal films for fabrication of atomically separated nanoplasmonic dimers SIMS characterization of TiN diffusion barrier layer on steel substrate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1