{"title":"高效的缓存架构,可靠的混合电压操作使用EDC代码","authors":"Bojan Maric, J. Abella, M. Valero","doi":"10.7873/DATE.2013.193","DOIUrl":null,"url":null,"abstract":"Semiconductor technology evolution enables the design of sensor-based battery-powered ultra-low-cost chips (e.g., below 1 €) required for new market segments such as body, urban life and environment monitoring. Caches have been shown to be the highest energy and area consumer in those chips. This paper proposes a novel, hybrid-operation (high Vcc, ultra-low Vcc), single-Vcc domain cache architecture based on replacing energy-hungry bitcells (e.g., 10T) by more energy-efficient and smaller cells (e.g., 8T) enhanced with Error Detection and Correction (EDC) features for high reliability and performance predictability. Our architecture is proven to largely outperform existing solutions in terms of energy and area.","PeriodicalId":6310,"journal":{"name":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"48 1","pages":"917-920"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Efficient cache architectures for reliable hybrid voltage operation using EDC codes\",\"authors\":\"Bojan Maric, J. Abella, M. Valero\",\"doi\":\"10.7873/DATE.2013.193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semiconductor technology evolution enables the design of sensor-based battery-powered ultra-low-cost chips (e.g., below 1 €) required for new market segments such as body, urban life and environment monitoring. Caches have been shown to be the highest energy and area consumer in those chips. This paper proposes a novel, hybrid-operation (high Vcc, ultra-low Vcc), single-Vcc domain cache architecture based on replacing energy-hungry bitcells (e.g., 10T) by more energy-efficient and smaller cells (e.g., 8T) enhanced with Error Detection and Correction (EDC) features for high reliability and performance predictability. Our architecture is proven to largely outperform existing solutions in terms of energy and area.\",\"PeriodicalId\":6310,\"journal\":{\"name\":\"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"48 1\",\"pages\":\"917-920\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7873/DATE.2013.193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2013.193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient cache architectures for reliable hybrid voltage operation using EDC codes
Semiconductor technology evolution enables the design of sensor-based battery-powered ultra-low-cost chips (e.g., below 1 €) required for new market segments such as body, urban life and environment monitoring. Caches have been shown to be the highest energy and area consumer in those chips. This paper proposes a novel, hybrid-operation (high Vcc, ultra-low Vcc), single-Vcc domain cache architecture based on replacing energy-hungry bitcells (e.g., 10T) by more energy-efficient and smaller cells (e.g., 8T) enhanced with Error Detection and Correction (EDC) features for high reliability and performance predictability. Our architecture is proven to largely outperform existing solutions in terms of energy and area.