垂直B0场开放MRI系统的正交体积射频线圈

IF 0.9 4区 医学 Q4 CHEMISTRY, PHYSICAL Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering Pub Date : 2016-09-13 DOI:10.1002/cmr.b.21327
Boguslaw Tomanek, Vyacheslav Volotovskyy, Randy Tyson, Donghui Yin, Jonathan Sharp, Barbara Blasiak
{"title":"垂直B0场开放MRI系统的正交体积射频线圈","authors":"Boguslaw Tomanek,&nbsp;Vyacheslav Volotovskyy,&nbsp;Randy Tyson,&nbsp;Donghui Yin,&nbsp;Jonathan Sharp,&nbsp;Barbara Blasiak","doi":"10.1002/cmr.b.21327","DOIUrl":null,"url":null,"abstract":"<p>Cylindrical quadrature radio frequency (RF) coils are widely used in magnetic resonance imaging and spectroscopy due to their high sensitivity and field uniformity. However, the field geometry is unsuitable for use in low-field open magnetic resonance imaging (MRI) systems with vertical B<sub>0</sub> field configurations. Therefore, a new design is proposed. A quadrature RF coil that combines Alderman-Grant and Helmholtz designs was constructed to produce two independent modes, both orthogonal to the main magnetic field. The coil provides good RF homogeneity over a 20 × 15 × 15 cm volume and operates as both a transmit and receive coil. The application of the coil for 0.2 Tesla permanent magnet with a vertical B<sub>0</sub> field is shown. The proposed coil may be applied to MR imaging of larger objects at low vertical magnetic fields.</p>","PeriodicalId":50623,"journal":{"name":"Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering","volume":"46B 3","pages":"118-122"},"PeriodicalIF":0.9000,"publicationDate":"2016-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmr.b.21327","citationCount":"3","resultStr":"{\"title\":\"A quadrature volume RF coil for vertical B0 field open MRI systems\",\"authors\":\"Boguslaw Tomanek,&nbsp;Vyacheslav Volotovskyy,&nbsp;Randy Tyson,&nbsp;Donghui Yin,&nbsp;Jonathan Sharp,&nbsp;Barbara Blasiak\",\"doi\":\"10.1002/cmr.b.21327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cylindrical quadrature radio frequency (RF) coils are widely used in magnetic resonance imaging and spectroscopy due to their high sensitivity and field uniformity. However, the field geometry is unsuitable for use in low-field open magnetic resonance imaging (MRI) systems with vertical B<sub>0</sub> field configurations. Therefore, a new design is proposed. A quadrature RF coil that combines Alderman-Grant and Helmholtz designs was constructed to produce two independent modes, both orthogonal to the main magnetic field. The coil provides good RF homogeneity over a 20 × 15 × 15 cm volume and operates as both a transmit and receive coil. The application of the coil for 0.2 Tesla permanent magnet with a vertical B<sub>0</sub> field is shown. The proposed coil may be applied to MR imaging of larger objects at low vertical magnetic fields.</p>\",\"PeriodicalId\":50623,\"journal\":{\"name\":\"Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering\",\"volume\":\"46B 3\",\"pages\":\"118-122\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2016-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cmr.b.21327\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cmr.b.21327\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmr.b.21327","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 3

摘要

圆柱正交射频线圈因其高灵敏度和场均匀性而广泛应用于磁共振成像和光谱学领域。然而,场的几何形状不适合用于具有垂直B0场配置的低场开放式磁共振成像(MRI)系统。因此,提出了一种新的设计方案。结合Alderman-Grant和Helmholtz设计的正交射频线圈可以产生两个独立的模式,它们都与主磁场正交。该线圈在20 × 15 × 15厘米的体积上提供良好的射频均匀性,可同时作为发射和接收线圈。给出了该线圈在具有垂直B0磁场的0.2特斯拉永磁体中的应用。所提出的线圈可以应用于低垂直磁场下较大物体的磁共振成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A quadrature volume RF coil for vertical B0 field open MRI systems

Cylindrical quadrature radio frequency (RF) coils are widely used in magnetic resonance imaging and spectroscopy due to their high sensitivity and field uniformity. However, the field geometry is unsuitable for use in low-field open magnetic resonance imaging (MRI) systems with vertical B0 field configurations. Therefore, a new design is proposed. A quadrature RF coil that combines Alderman-Grant and Helmholtz designs was constructed to produce two independent modes, both orthogonal to the main magnetic field. The coil provides good RF homogeneity over a 20 × 15 × 15 cm volume and operates as both a transmit and receive coil. The application of the coil for 0.2 Tesla permanent magnet with a vertical B0 field is shown. The proposed coil may be applied to MR imaging of larger objects at low vertical magnetic fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
3
审稿时长
>12 weeks
期刊介绍: Concepts in Magnetic Resonance Part B brings together engineers and physicists involved in the design and development of hardware and software employed in magnetic resonance techniques. The journal welcomes contributions predominantly from the fields of magnetic resonance imaging (MRI), nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR), but also encourages submissions relating to less common magnetic resonance imaging and analytical methods. Contributors come from both academia and industry, to report the latest advancements in the development of instrumentation and computer programming to underpin medical, non-medical, and analytical magnetic resonance techniques.
期刊最新文献
Impact of Patient Body Posture on RF-Induced Energy Absorption by Orthopedic Plates Odd-Leg Birdcages for Geometric Decoupling in Multinuclear Imaging and Spectroscopy A General Framework for Automated Accurate Calculation of b-Matrix (Auto-b) in Diffusion MRI Pulse Sequences Development of Electron Paramagnetic Resonance Magnet System for In Vivo Tooth Dosimetry Diagnosis of Alzheimer’s Disease with Extreme Learning Machine on Whole-Brain Functional Connectivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1