Kazuki Takeishi, Shula L. Chen, J. Takayama, Kodai Itabashi, Masayuki Urabe, A. Murayama
{"title":"基于ingaas的量子点耦合纳米结构中自旋动力学的瞬态光致发光研究","authors":"Kazuki Takeishi, Shula L. Chen, J. Takayama, Kodai Itabashi, Masayuki Urabe, A. Murayama","doi":"10.1109/NANO.2016.7751318","DOIUrl":null,"url":null,"abstract":"We have made transient photoluminescence (PL) study on electron-spin dynamics in InGaAs-based coupled nanostructures of quantum dots (QDs) with quantum wells (QWs). Self-assembled InGaAs QDs were grown integrated with an InGaAs QW through a GaAs tunneling barrier or embedded in a GaAs QW. Time-resolved circularly polarized PL in the QDs was measured as a function of temperature after optical spin excitation selectively in the QW, reflecting electron-spin polarization injected from the QW into QDs. We show the spin injection dynamics induced by spin tunneling and subsequent energy relaxation from the QW into QDs in the former coupled QDs. Spin relaxation at excited states in the QDs after the dynamical spin injection is shown as a function of temperature. These coupled QD samples exhibit thermally persistent spin polarization up to 200 K, originating from ultrafast and thus efficient spin injection as well as longer spin-relaxation times compared to radiative decay times in the QDs after the injection.","PeriodicalId":6646,"journal":{"name":"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)","volume":"94 1","pages":"630-632"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transient photoluminescence study on spin dynamics in InGaAs-based coupled nanostructures of quantum dots with quantum wells\",\"authors\":\"Kazuki Takeishi, Shula L. Chen, J. Takayama, Kodai Itabashi, Masayuki Urabe, A. Murayama\",\"doi\":\"10.1109/NANO.2016.7751318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have made transient photoluminescence (PL) study on electron-spin dynamics in InGaAs-based coupled nanostructures of quantum dots (QDs) with quantum wells (QWs). Self-assembled InGaAs QDs were grown integrated with an InGaAs QW through a GaAs tunneling barrier or embedded in a GaAs QW. Time-resolved circularly polarized PL in the QDs was measured as a function of temperature after optical spin excitation selectively in the QW, reflecting electron-spin polarization injected from the QW into QDs. We show the spin injection dynamics induced by spin tunneling and subsequent energy relaxation from the QW into QDs in the former coupled QDs. Spin relaxation at excited states in the QDs after the dynamical spin injection is shown as a function of temperature. These coupled QD samples exhibit thermally persistent spin polarization up to 200 K, originating from ultrafast and thus efficient spin injection as well as longer spin-relaxation times compared to radiative decay times in the QDs after the injection.\",\"PeriodicalId\":6646,\"journal\":{\"name\":\"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)\",\"volume\":\"94 1\",\"pages\":\"630-632\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2016.7751318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2016.7751318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transient photoluminescence study on spin dynamics in InGaAs-based coupled nanostructures of quantum dots with quantum wells
We have made transient photoluminescence (PL) study on electron-spin dynamics in InGaAs-based coupled nanostructures of quantum dots (QDs) with quantum wells (QWs). Self-assembled InGaAs QDs were grown integrated with an InGaAs QW through a GaAs tunneling barrier or embedded in a GaAs QW. Time-resolved circularly polarized PL in the QDs was measured as a function of temperature after optical spin excitation selectively in the QW, reflecting electron-spin polarization injected from the QW into QDs. We show the spin injection dynamics induced by spin tunneling and subsequent energy relaxation from the QW into QDs in the former coupled QDs. Spin relaxation at excited states in the QDs after the dynamical spin injection is shown as a function of temperature. These coupled QD samples exhibit thermally persistent spin polarization up to 200 K, originating from ultrafast and thus efficient spin injection as well as longer spin-relaxation times compared to radiative decay times in the QDs after the injection.