LVDC和ELVDC电网的非递归系统辨识与故障检测

C. Strobl, Maximilian Schäfer, R. Rabenstein
{"title":"LVDC和ELVDC电网的非递归系统辨识与故障检测","authors":"C. Strobl, Maximilian Schäfer, R. Rabenstein","doi":"10.1109/ISCAS.2018.8351714","DOIUrl":null,"url":null,"abstract":"Low end extra low voltage direct current grids require selective fault protection designed for the specific application and system voltage. System identification and machine learning methods are helpful to identify, to localize and to classify occurring fault events. A category of non-recursive large-signal methods in the time domain for system identification and for refined fault detection and analysis is introduced.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"3 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Non-Recursive System Identification and Fault Detection in LVDC and ELVDC Grids\",\"authors\":\"C. Strobl, Maximilian Schäfer, R. Rabenstein\",\"doi\":\"10.1109/ISCAS.2018.8351714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low end extra low voltage direct current grids require selective fault protection designed for the specific application and system voltage. System identification and machine learning methods are helpful to identify, to localize and to classify occurring fault events. A category of non-recursive large-signal methods in the time domain for system identification and for refined fault detection and analysis is introduced.\",\"PeriodicalId\":6569,\"journal\":{\"name\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"volume\":\"3 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2018.8351714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2018.8351714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

低端特低压直流电网需要针对特定应用和系统电压设计的选择性故障保护。系统识别和机器学习方法有助于识别、定位和分类发生的故障事件。介绍了一类用于系统辨识和精细故障检测与分析的时域非递归大信号方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-Recursive System Identification and Fault Detection in LVDC and ELVDC Grids
Low end extra low voltage direct current grids require selective fault protection designed for the specific application and system voltage. System identification and machine learning methods are helpful to identify, to localize and to classify occurring fault events. A category of non-recursive large-signal methods in the time domain for system identification and for refined fault detection and analysis is introduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra-Low Power Wide-Dynamic-Range Universal Interface for Capacitive and Resistive Sensors An Energy-Efficient 13-bit Zero-Crossing ΔΣ Capacitance-to-Digital Converter with 1 pF-to-10 nF Sensing Range Power Optimized Comparator Selecting Method For Stochastic ADC Brain-inspired recurrent neural network with plastic RRAM synapses On the Use of Approximate Multipliers in LMS Adaptive Filters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1