医学文献分类全球化技术的比较分析

IF 3.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Artificial Intelligence and Soft Computing Research Pub Date : 2023-02-17 DOI:10.55195/jscai.1216800
B. Parlak, S. Aydemi̇r
{"title":"医学文献分类全球化技术的比较分析","authors":"B. Parlak, S. Aydemi̇r","doi":"10.55195/jscai.1216800","DOIUrl":null,"url":null,"abstract":"Medical document classification is one of the important topics of text mining. Globalisation techniques play a major role in text classification. It is also known that globalisation techniques play an important role in text classification. Our aim in the study is to conduct a detailed analysis on two data sets with English and Turkish content by using medical text summaries of Turkish articles. These datasets consist of Turkish and English text summaries of the same articles. To observe how successful local feature selection methods in the field of text classification affect the classification performance on these two equivalent data sets by applying different globalisation techniques. The feature selection methods used are CHI2, MI, OR, WLLR. Globalisation techniques are SUM, AVG, MAX. Classifiers are MNB, DT, and SVM.","PeriodicalId":48494,"journal":{"name":"Journal of Artificial Intelligence and Soft Computing Research","volume":"1 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Analysis of Globalisation Techniques for Medical Document Classification\",\"authors\":\"B. Parlak, S. Aydemi̇r\",\"doi\":\"10.55195/jscai.1216800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Medical document classification is one of the important topics of text mining. Globalisation techniques play a major role in text classification. It is also known that globalisation techniques play an important role in text classification. Our aim in the study is to conduct a detailed analysis on two data sets with English and Turkish content by using medical text summaries of Turkish articles. These datasets consist of Turkish and English text summaries of the same articles. To observe how successful local feature selection methods in the field of text classification affect the classification performance on these two equivalent data sets by applying different globalisation techniques. The feature selection methods used are CHI2, MI, OR, WLLR. Globalisation techniques are SUM, AVG, MAX. Classifiers are MNB, DT, and SVM.\",\"PeriodicalId\":48494,\"journal\":{\"name\":\"Journal of Artificial Intelligence and Soft Computing Research\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence and Soft Computing Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.55195/jscai.1216800\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Soft Computing Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.55195/jscai.1216800","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

医学文献分类是文本挖掘的重要课题之一。全球化技术在文本分类中起着重要的作用。全球化技术在文本分类中发挥着重要的作用。我们在研究中的目的是通过使用土耳其文章的医学文本摘要,对英语和土耳其语内容的两个数据集进行详细分析。这些数据集由相同文章的土耳其语和英语文本摘要组成。观察文本分类领域成功的局部特征选择方法如何通过应用不同的全球化技术对这两个等效数据集的分类性能产生影响。使用的特征选择方法有CHI2、MI、OR、WLLR。全球化技术是SUM, AVG, MAX。分类器有MNB、DT和SVM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative Analysis of Globalisation Techniques for Medical Document Classification
Medical document classification is one of the important topics of text mining. Globalisation techniques play a major role in text classification. It is also known that globalisation techniques play an important role in text classification. Our aim in the study is to conduct a detailed analysis on two data sets with English and Turkish content by using medical text summaries of Turkish articles. These datasets consist of Turkish and English text summaries of the same articles. To observe how successful local feature selection methods in the field of text classification affect the classification performance on these two equivalent data sets by applying different globalisation techniques. The feature selection methods used are CHI2, MI, OR, WLLR. Globalisation techniques are SUM, AVG, MAX. Classifiers are MNB, DT, and SVM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Artificial Intelligence and Soft Computing Research
Journal of Artificial Intelligence and Soft Computing Research COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
7.00
自引率
25.00%
发文量
10
审稿时长
24 weeks
期刊介绍: Journal of Artificial Intelligence and Soft Computing Research (available also at Sciendo (De Gruyter)) is a dynamically developing international journal focused on the latest scientific results and methods constituting traditional artificial intelligence methods and soft computing techniques. Our goal is to bring together scientists representing both approaches and various research communities.
期刊最新文献
Bending Path Understanding Based on Angle Projections in Field Environments Self-Organized Operational Neural Networks for The Detection of Atrial Fibrillation Interpreting Convolutional Layers in DNN Model Based on Time–Frequency Representation of Emotional Speech A Few-Shot Learning Approach for Covid-19 Diagnosis Using Quasi-Configured Topological Spaces Metrics for Assessing Generalization of Deep Reinforcement Learning in Parameterized Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1