Hamed Alemansour, S. Moheimani, J. Owen, J. Randall, E. Fuchs
{"title":"高信噪比差分电导光谱","authors":"Hamed Alemansour, S. Moheimani, J. Owen, J. Randall, E. Fuchs","doi":"10.1116/6.0000823","DOIUrl":null,"url":null,"abstract":"The scanning tunneling microscope (STM) has enabled manipulation and interrogation of surfaces with atomic-scale resolution. Electronic information about a surface is obtained by combining the imaging capability of the STM with scanning tunneling spectroscopy, i.e., measurement of current-voltage (I/V) characteristics of the surface. We propose a change in the STM feedback loop that enables capturing a higher quality dI/dV image. A high frequency dither voltage is added to the bias voltage of the sample, and the fundamental frequency component of the resulting current is demodulated. The in-phase component of this signal is then plotted along with the X and Y position data, constructing the dI/dV image. We show that by incorporating notch filters in the STM feedback loop, we may utilize a high-amplitude dither voltage to significantly improve the quality of the obtained dI/dV image.","PeriodicalId":17652,"journal":{"name":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","volume":"25 1","pages":"010601"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High signal-to-noise ratio differential conductance spectroscopy\",\"authors\":\"Hamed Alemansour, S. Moheimani, J. Owen, J. Randall, E. Fuchs\",\"doi\":\"10.1116/6.0000823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The scanning tunneling microscope (STM) has enabled manipulation and interrogation of surfaces with atomic-scale resolution. Electronic information about a surface is obtained by combining the imaging capability of the STM with scanning tunneling spectroscopy, i.e., measurement of current-voltage (I/V) characteristics of the surface. We propose a change in the STM feedback loop that enables capturing a higher quality dI/dV image. A high frequency dither voltage is added to the bias voltage of the sample, and the fundamental frequency component of the resulting current is demodulated. The in-phase component of this signal is then plotted along with the X and Y position data, constructing the dI/dV image. We show that by incorporating notch filters in the STM feedback loop, we may utilize a high-amplitude dither voltage to significantly improve the quality of the obtained dI/dV image.\",\"PeriodicalId\":17652,\"journal\":{\"name\":\"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena\",\"volume\":\"25 1\",\"pages\":\"010601\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0000823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0000823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High signal-to-noise ratio differential conductance spectroscopy
The scanning tunneling microscope (STM) has enabled manipulation and interrogation of surfaces with atomic-scale resolution. Electronic information about a surface is obtained by combining the imaging capability of the STM with scanning tunneling spectroscopy, i.e., measurement of current-voltage (I/V) characteristics of the surface. We propose a change in the STM feedback loop that enables capturing a higher quality dI/dV image. A high frequency dither voltage is added to the bias voltage of the sample, and the fundamental frequency component of the resulting current is demodulated. The in-phase component of this signal is then plotted along with the X and Y position data, constructing the dI/dV image. We show that by incorporating notch filters in the STM feedback loop, we may utilize a high-amplitude dither voltage to significantly improve the quality of the obtained dI/dV image.