高电压GaN-on-Si肖特基势垒二极管(SBD)的热特性,用于设计功率HEMT的片上热关断电路

D. Risbud, K. Pedrotti, M. Power, J. Pomeroy, Martin Kuball
{"title":"高电压GaN-on-Si肖特基势垒二极管(SBD)的热特性,用于设计功率HEMT的片上热关断电路","authors":"D. Risbud, K. Pedrotti, M. Power, J. Pomeroy, Martin Kuball","doi":"10.1109/WIPDA.2015.7369293","DOIUrl":null,"url":null,"abstract":"Thermal characterization of large multi-finger AlGaN/GaN Schottky Barrier Diodes (SBDs) fabricated on GaN-on-Si high voltage power substrates is reported. An accurate thermal model was developed for the device structure to estimate the device temperature near the 2-DEG in HEMT switches for various power densities. Raman thermography and infrared imaging were used under DC bias conditions for temperature measurement and mapping of heat distribution in the devices. Temperature rise vs. power density, and temperature rise vs. device area are presented. The assumption of uniform temperature distribution throughout the channel holds well for smaller power devices typically used in microwave and RF circuits. However, for the substantially larger high voltage power diodes and HEMTs used in automotive, power conversion and motor drive applications, the temperature distribution is not homogeneous from the center of the die to the outer edge. Detailed knowledge of the temperature distribution across the die is essential for system level thermal management. Thermal simulation, characterization results and the temperature coefficient of the sense SBD are used to design a novel self-protecting thermal shutdown circuit integrated with a discrete 600V power HEMT.","PeriodicalId":6538,"journal":{"name":"2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA)","volume":"43 1","pages":"156-161"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Thermal characterization of high voltage GaN-on-Si Schottky Barrier Diodes (SBD) for designing an on-chip thermal shutdown circuit for a power HEMT\",\"authors\":\"D. Risbud, K. Pedrotti, M. Power, J. Pomeroy, Martin Kuball\",\"doi\":\"10.1109/WIPDA.2015.7369293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermal characterization of large multi-finger AlGaN/GaN Schottky Barrier Diodes (SBDs) fabricated on GaN-on-Si high voltage power substrates is reported. An accurate thermal model was developed for the device structure to estimate the device temperature near the 2-DEG in HEMT switches for various power densities. Raman thermography and infrared imaging were used under DC bias conditions for temperature measurement and mapping of heat distribution in the devices. Temperature rise vs. power density, and temperature rise vs. device area are presented. The assumption of uniform temperature distribution throughout the channel holds well for smaller power devices typically used in microwave and RF circuits. However, for the substantially larger high voltage power diodes and HEMTs used in automotive, power conversion and motor drive applications, the temperature distribution is not homogeneous from the center of the die to the outer edge. Detailed knowledge of the temperature distribution across the die is essential for system level thermal management. Thermal simulation, characterization results and the temperature coefficient of the sense SBD are used to design a novel self-protecting thermal shutdown circuit integrated with a discrete 600V power HEMT.\",\"PeriodicalId\":6538,\"journal\":{\"name\":\"2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA)\",\"volume\":\"43 1\",\"pages\":\"156-161\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIPDA.2015.7369293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIPDA.2015.7369293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

报道了在GaN-on- si高压功率衬底上制备的大型多指AlGaN/GaN肖特基势垒二极管(sdd)的热特性。建立了器件结构的精确热模型,以估计不同功率密度下HEMT开关2℃附近的器件温度。在直流偏置条件下,采用拉曼热成像和红外成像技术对器件进行了温度测量和热分布测绘。温升与功率密度的关系,以及温升与器件面积的关系。整个通道温度分布均匀的假设适用于微波和射频电路中通常使用的小功率器件。然而,对于用于汽车、电源转换和电机驱动应用的较大的高压功率二极管和hemt,从模具中心到外缘的温度分布不是均匀的。对整个模具温度分布的详细了解对于系统级热管理是必不可少的。利用热仿真、表征结果和传感SBD的温度系数,设计了一种集成分立600V功率HEMT的新型自保护热关断电路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermal characterization of high voltage GaN-on-Si Schottky Barrier Diodes (SBD) for designing an on-chip thermal shutdown circuit for a power HEMT
Thermal characterization of large multi-finger AlGaN/GaN Schottky Barrier Diodes (SBDs) fabricated on GaN-on-Si high voltage power substrates is reported. An accurate thermal model was developed for the device structure to estimate the device temperature near the 2-DEG in HEMT switches for various power densities. Raman thermography and infrared imaging were used under DC bias conditions for temperature measurement and mapping of heat distribution in the devices. Temperature rise vs. power density, and temperature rise vs. device area are presented. The assumption of uniform temperature distribution throughout the channel holds well for smaller power devices typically used in microwave and RF circuits. However, for the substantially larger high voltage power diodes and HEMTs used in automotive, power conversion and motor drive applications, the temperature distribution is not homogeneous from the center of the die to the outer edge. Detailed knowledge of the temperature distribution across the die is essential for system level thermal management. Thermal simulation, characterization results and the temperature coefficient of the sense SBD are used to design a novel self-protecting thermal shutdown circuit integrated with a discrete 600V power HEMT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recent developments in GaN-based optical rapid switching semiconductor devices Loss analysis of GaN devices in an isolated bidirectional DC-DC converter Monolithic integrated quasi-normally-off gate driver and 600 V GaN-on-Si HEMT A 1 MHz eGaN FET based 4-switch buck-boost converter for automotive applications Reliability and failure physics of GaN HEMT, MIS-HEMT and p-gate HEMTs for power switching applications: Parasitic effects and degradation due to deep level effects and time-dependent breakdown phenomena
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1