Michael D. Ekstrand, Anubrata Das, R. Burke, Fernando Diaz
{"title":"信息获取系统的公平性","authors":"Michael D. Ekstrand, Anubrata Das, R. Burke, Fernando Diaz","doi":"10.1561/1500000079","DOIUrl":null,"url":null,"abstract":"Recommendation, information retrieval, and other information access systems pose unique challenges for investigating and applying the fairness and non-discrimination concepts that have been developed for studying other machine learning systems. While fair information access shares many commonalities with fair classification, the multistakeholder nature of information access applications, the rank-based problem setting, the centrality of personalization in many cases, and the role of user response complicate the problem of identifying precisely what types and operationalizations of fairness may be relevant, let alone measuring or promoting them. In this monograph, we present a taxonomy of the various dimensions of fair information access and survey the literature to date on this new and rapidly-growing topic. We preface this with brief introductions to information access and algorithmic fairness, to facilitate use of this work by scholars with experience in one (or neither) of these fields who wish to learn about their intersection. We conclude with several open problems in fair information access, along with some suggestions for how to approach research in this space.","PeriodicalId":48829,"journal":{"name":"Foundations and Trends in Information Retrieval","volume":"1 1","pages":"1-177"},"PeriodicalIF":8.3000,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Fairness in Information Access Systems\",\"authors\":\"Michael D. Ekstrand, Anubrata Das, R. Burke, Fernando Diaz\",\"doi\":\"10.1561/1500000079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommendation, information retrieval, and other information access systems pose unique challenges for investigating and applying the fairness and non-discrimination concepts that have been developed for studying other machine learning systems. While fair information access shares many commonalities with fair classification, the multistakeholder nature of information access applications, the rank-based problem setting, the centrality of personalization in many cases, and the role of user response complicate the problem of identifying precisely what types and operationalizations of fairness may be relevant, let alone measuring or promoting them. In this monograph, we present a taxonomy of the various dimensions of fair information access and survey the literature to date on this new and rapidly-growing topic. We preface this with brief introductions to information access and algorithmic fairness, to facilitate use of this work by scholars with experience in one (or neither) of these fields who wish to learn about their intersection. We conclude with several open problems in fair information access, along with some suggestions for how to approach research in this space.\",\"PeriodicalId\":48829,\"journal\":{\"name\":\"Foundations and Trends in Information Retrieval\",\"volume\":\"1 1\",\"pages\":\"1-177\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2021-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations and Trends in Information Retrieval\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1561/1500000079\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations and Trends in Information Retrieval","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1561/1500000079","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Recommendation, information retrieval, and other information access systems pose unique challenges for investigating and applying the fairness and non-discrimination concepts that have been developed for studying other machine learning systems. While fair information access shares many commonalities with fair classification, the multistakeholder nature of information access applications, the rank-based problem setting, the centrality of personalization in many cases, and the role of user response complicate the problem of identifying precisely what types and operationalizations of fairness may be relevant, let alone measuring or promoting them. In this monograph, we present a taxonomy of the various dimensions of fair information access and survey the literature to date on this new and rapidly-growing topic. We preface this with brief introductions to information access and algorithmic fairness, to facilitate use of this work by scholars with experience in one (or neither) of these fields who wish to learn about their intersection. We conclude with several open problems in fair information access, along with some suggestions for how to approach research in this space.
期刊介绍:
The surge in research across all domains in the past decade has resulted in a plethora of new publications, causing an exponential growth in published research. Navigating through this extensive literature and staying current has become a time-consuming challenge. While electronic publishing provides instant access to more articles than ever, discerning the essential ones for a comprehensive understanding of any topic remains an issue. To tackle this, Foundations and Trends® in Information Retrieval - FnTIR - addresses the problem by publishing high-quality survey and tutorial monographs in the field.
Each issue of Foundations and Trends® in Information Retrieval - FnT IR features a 50-100 page monograph authored by research leaders, covering tutorial subjects, research retrospectives, and survey papers that provide state-of-the-art reviews within the scope of the journal.