{"title":"用过的茶粉吸附亮绿色染料:平衡、动力学和热力学研究","authors":"S. Vithalkar, R. Jugade, D. Saravanan","doi":"10.2166/aqua.2022.076","DOIUrl":null,"url":null,"abstract":"\n The present research is based on the removal of Brilliant Green (BG) dye from its aqueous solution. Used-tea-powder (UTP) was used as a potential adsorbent to remove BG from aqueous solution. Pore morphology, surface properties, crystalline nature and thermal stability of UTP were assessed by using SEM, FTIR, XRD and TGA analysis. The optimized working conditions were found to be pH 6, UTP dose 100 mg, adsorption time 60 min and BG concentration 100 mg L−1. The qmax obtained from the Langmuir model was 101.01 mg g−1 showing the utility of UTP in dye removal. The breakthrough volume and efficiency of the column were evaluated through column adsorption studies in fixed-bed mode. It was found that the pseudo-second-order kinetics model was followed as evaluated by the correlation studies. The calculated thermodynamic parameters showed that the adsorption process was feasible, exothermic and spontaneous.","PeriodicalId":17666,"journal":{"name":"Journal of Water Supply: Research and Technology-Aqua","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Adsorption of brilliant green dye by used-tea-powder: equilibrium, kinetics and thermodynamics studies\",\"authors\":\"S. Vithalkar, R. Jugade, D. Saravanan\",\"doi\":\"10.2166/aqua.2022.076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The present research is based on the removal of Brilliant Green (BG) dye from its aqueous solution. Used-tea-powder (UTP) was used as a potential adsorbent to remove BG from aqueous solution. Pore morphology, surface properties, crystalline nature and thermal stability of UTP were assessed by using SEM, FTIR, XRD and TGA analysis. The optimized working conditions were found to be pH 6, UTP dose 100 mg, adsorption time 60 min and BG concentration 100 mg L−1. The qmax obtained from the Langmuir model was 101.01 mg g−1 showing the utility of UTP in dye removal. The breakthrough volume and efficiency of the column were evaluated through column adsorption studies in fixed-bed mode. It was found that the pseudo-second-order kinetics model was followed as evaluated by the correlation studies. The calculated thermodynamic parameters showed that the adsorption process was feasible, exothermic and spontaneous.\",\"PeriodicalId\":17666,\"journal\":{\"name\":\"Journal of Water Supply: Research and Technology-Aqua\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Supply: Research and Technology-Aqua\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/aqua.2022.076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Supply: Research and Technology-Aqua","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/aqua.2022.076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adsorption of brilliant green dye by used-tea-powder: equilibrium, kinetics and thermodynamics studies
The present research is based on the removal of Brilliant Green (BG) dye from its aqueous solution. Used-tea-powder (UTP) was used as a potential adsorbent to remove BG from aqueous solution. Pore morphology, surface properties, crystalline nature and thermal stability of UTP were assessed by using SEM, FTIR, XRD and TGA analysis. The optimized working conditions were found to be pH 6, UTP dose 100 mg, adsorption time 60 min and BG concentration 100 mg L−1. The qmax obtained from the Langmuir model was 101.01 mg g−1 showing the utility of UTP in dye removal. The breakthrough volume and efficiency of the column were evaluated through column adsorption studies in fixed-bed mode. It was found that the pseudo-second-order kinetics model was followed as evaluated by the correlation studies. The calculated thermodynamic parameters showed that the adsorption process was feasible, exothermic and spontaneous.