SpeDo: 6 DOF自我运动传感器使用散斑离焦成像

Kensei Jo, Mohit Gupta, S. Nayar
{"title":"SpeDo: 6 DOF自我运动传感器使用散斑离焦成像","authors":"Kensei Jo, Mohit Gupta, S. Nayar","doi":"10.1109/ICCV.2015.491","DOIUrl":null,"url":null,"abstract":"Sensors that measure their motion with respect to the surrounding environment (ego-motion sensors) can be broadly classified into two categories. First is inertial sensors such as accelerometers. In order to estimate position and velocity, these sensors integrate the measured acceleration, which often results in accumulation of large errors over time. Second, camera-based approaches such as SLAM that can measure position directly, but their performance depends on the surrounding scene's properties. These approaches cannot function reliably if the scene has low frequency textures or small depth variations. We present a novel ego-motion sensor called SpeDo that addresses these fundamental limitations. SpeDo is based on using coherent light sources and cameras with large defocus. Coherent light, on interacting with a scene, creates a high frequency interferometric pattern in the captured images, called speckle. We develop a theoretical model for speckle flow (motion of speckle as a function of sensor motion), and show that it is quasi-invariant to surrounding scene's properties. As a result, SpeDo can measure ego-motion (not derivative of motion) simply by estimating optical flow at a few image locations. We have built a low-cost and compact hardware prototype of SpeDo and demonstrated high precision 6 DOF ego-motion estimation for complex trajectories in scenarios where the scene properties are challenging (e.g., repeating or no texture) as well as unknown.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"22 1","pages":"4319-4327"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"SpeDo: 6 DOF Ego-Motion Sensor Using Speckle Defocus Imaging\",\"authors\":\"Kensei Jo, Mohit Gupta, S. Nayar\",\"doi\":\"10.1109/ICCV.2015.491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sensors that measure their motion with respect to the surrounding environment (ego-motion sensors) can be broadly classified into two categories. First is inertial sensors such as accelerometers. In order to estimate position and velocity, these sensors integrate the measured acceleration, which often results in accumulation of large errors over time. Second, camera-based approaches such as SLAM that can measure position directly, but their performance depends on the surrounding scene's properties. These approaches cannot function reliably if the scene has low frequency textures or small depth variations. We present a novel ego-motion sensor called SpeDo that addresses these fundamental limitations. SpeDo is based on using coherent light sources and cameras with large defocus. Coherent light, on interacting with a scene, creates a high frequency interferometric pattern in the captured images, called speckle. We develop a theoretical model for speckle flow (motion of speckle as a function of sensor motion), and show that it is quasi-invariant to surrounding scene's properties. As a result, SpeDo can measure ego-motion (not derivative of motion) simply by estimating optical flow at a few image locations. We have built a low-cost and compact hardware prototype of SpeDo and demonstrated high precision 6 DOF ego-motion estimation for complex trajectories in scenarios where the scene properties are challenging (e.g., repeating or no texture) as well as unknown.\",\"PeriodicalId\":6633,\"journal\":{\"name\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"22 1\",\"pages\":\"4319-4327\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2015.491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

测量其相对于周围环境运动的传感器(自我运动传感器)大致可分为两类。首先是惯性传感器,如加速度计。为了估计位置和速度,这些传感器集成了测量到的加速度,这往往导致随着时间的推移积累了很大的误差。其次,基于相机的方法,如SLAM,可以直接测量位置,但其性能取决于周围场景的属性。如果场景具有低频纹理或小深度变化,这些方法就不能可靠地工作。我们提出了一种名为SpeDo的新型自我运动传感器,解决了这些基本限制。SpeDo是基于使用相干光源和大散焦相机。相干光在与场景相互作用时,在捕获的图像中产生高频干涉图案,称为散斑。我们建立了一个散斑流的理论模型(散斑运动作为传感器运动的函数),并表明它对周围场景的属性是准不变的。因此,SpeDo可以通过估计几个图像位置的光流来测量自我运动(而不是运动的导数)。我们已经建立了SpeDo的低成本和紧凑的硬件原型,并在场景属性具有挑战性(例如,重复或没有纹理)以及未知的场景中演示了高精度6 DOF复杂轨迹的自我运动估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SpeDo: 6 DOF Ego-Motion Sensor Using Speckle Defocus Imaging
Sensors that measure their motion with respect to the surrounding environment (ego-motion sensors) can be broadly classified into two categories. First is inertial sensors such as accelerometers. In order to estimate position and velocity, these sensors integrate the measured acceleration, which often results in accumulation of large errors over time. Second, camera-based approaches such as SLAM that can measure position directly, but their performance depends on the surrounding scene's properties. These approaches cannot function reliably if the scene has low frequency textures or small depth variations. We present a novel ego-motion sensor called SpeDo that addresses these fundamental limitations. SpeDo is based on using coherent light sources and cameras with large defocus. Coherent light, on interacting with a scene, creates a high frequency interferometric pattern in the captured images, called speckle. We develop a theoretical model for speckle flow (motion of speckle as a function of sensor motion), and show that it is quasi-invariant to surrounding scene's properties. As a result, SpeDo can measure ego-motion (not derivative of motion) simply by estimating optical flow at a few image locations. We have built a low-cost and compact hardware prototype of SpeDo and demonstrated high precision 6 DOF ego-motion estimation for complex trajectories in scenarios where the scene properties are challenging (e.g., repeating or no texture) as well as unknown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Listening with Your Eyes: Towards a Practical Visual Speech Recognition System Using Deep Boltzmann Machines Self-Calibration of Optical Lenses Single Image Pop-Up from Discriminatively Learned Parts Multi-task Recurrent Neural Network for Immediacy Prediction Low-Rank Tensor Approximation with Laplacian Scale Mixture Modeling for Multiframe Image Denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1