用于自动文档组合的概率文档模型

Niranjan Damera-Venkata, José Bento, Eamonn O'Brien-Strain
{"title":"用于自动文档组合的概率文档模型","authors":"Niranjan Damera-Venkata, José Bento, Eamonn O'Brien-Strain","doi":"10.1145/2034691.2034695","DOIUrl":null,"url":null,"abstract":"We present a new paradigm for automated document composition based on a generative, unified probabilistic document model (PDM) that models document composition. The model formally incorporates key design variables such as content pagination, relative arrangement possibilities for page elements and possible page edits. These design choices are modeled jointly as coupled random variables (a Bayesian Network) with uncertainty modeled by their probability distributions. The overall joint probability distribution for the network assigns higher probability to good design choices. Given this model, we show that the general document layout problem can be reduced to probabilistic inference over the Bayesian network. We show that the inference task may be accomplished efficiently, scaling linearly with the content in the best case. We provide a useful specialization of the general model and use it to illustrate the advantages of soft probabilistic encodings over hard one-way constraints in specifying design aesthetics.","PeriodicalId":91385,"journal":{"name":"Proceedings of the ACM Symposium on Document Engineering. ACM Symposium on Document Engineering","volume":"62 1","pages":"3-12"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Probabilistic document model for automated document composition\",\"authors\":\"Niranjan Damera-Venkata, José Bento, Eamonn O'Brien-Strain\",\"doi\":\"10.1145/2034691.2034695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new paradigm for automated document composition based on a generative, unified probabilistic document model (PDM) that models document composition. The model formally incorporates key design variables such as content pagination, relative arrangement possibilities for page elements and possible page edits. These design choices are modeled jointly as coupled random variables (a Bayesian Network) with uncertainty modeled by their probability distributions. The overall joint probability distribution for the network assigns higher probability to good design choices. Given this model, we show that the general document layout problem can be reduced to probabilistic inference over the Bayesian network. We show that the inference task may be accomplished efficiently, scaling linearly with the content in the best case. We provide a useful specialization of the general model and use it to illustrate the advantages of soft probabilistic encodings over hard one-way constraints in specifying design aesthetics.\",\"PeriodicalId\":91385,\"journal\":{\"name\":\"Proceedings of the ACM Symposium on Document Engineering. ACM Symposium on Document Engineering\",\"volume\":\"62 1\",\"pages\":\"3-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Symposium on Document Engineering. ACM Symposium on Document Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2034691.2034695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on Document Engineering. ACM Symposium on Document Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2034691.2034695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

我们提出了一种基于生成式统一概率文档模型(PDM)的自动文档组合的新范例,该模型对文档组合进行建模。该模型正式合并了关键的设计变量,如内容分页、页面元素的相对排列可能性和可能的页面编辑。这些设计选择联合建模为耦合随机变量(贝叶斯网络),其不确定性由其概率分布建模。网络的总体联合概率分布为良好的设计选择赋予了更高的概率。在此模型下,我们证明了一般的文档布局问题可以通过贝叶斯网络简化为概率推理。我们表明,在最好的情况下,推理任务可以有效地完成,与内容线性扩展。我们提供了一个有用的通用模型专门化,并用它来说明软概率编码在指定设计美学方面优于硬单向约束的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Probabilistic document model for automated document composition
We present a new paradigm for automated document composition based on a generative, unified probabilistic document model (PDM) that models document composition. The model formally incorporates key design variables such as content pagination, relative arrangement possibilities for page elements and possible page edits. These design choices are modeled jointly as coupled random variables (a Bayesian Network) with uncertainty modeled by their probability distributions. The overall joint probability distribution for the network assigns higher probability to good design choices. Given this model, we show that the general document layout problem can be reduced to probabilistic inference over the Bayesian network. We show that the inference task may be accomplished efficiently, scaling linearly with the content in the best case. We provide a useful specialization of the general model and use it to illustrate the advantages of soft probabilistic encodings over hard one-way constraints in specifying design aesthetics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Notarial Archives, Valletta: Starting from Zero Truncation: all the news that fits we'll print Classifying and ranking search engine results as potential sources of plagiarism An ensemble approach for text document clustering using Wikipedia concepts Document changes: modeling, detection, storage and visualization (DChanges 2014)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1