差异化私有多方高维数据发布

Sen Su, Peng Tang, Xiang Cheng, R. Chen, Zequn Wu
{"title":"差异化私有多方高维数据发布","authors":"Sen Su, Peng Tang, Xiang Cheng, R. Chen, Zequn Wu","doi":"10.1109/ICDE.2016.7498241","DOIUrl":null,"url":null,"abstract":"In this paper, we study the novel problem of publishing high-dimensional data in a distributed multi-party environment under differential privacy. In particular, with the assistance of a semi-trusted curator, the involved parties (i.e., local data owners) collectively generate a synthetic integrated dataset while satisfying ε-differential privacy for any local dataset. To solve this problem, we present a differentially private sequential update of Bayesian network (DP-SUBN) solution. In DP-SUBN, the parties and the curator collaboratively identify the Bayesian network ℕ that best fits the integrated dataset D in a sequential manner, from which a synthetic dataset can then be generated. The fundamental advantage of adopting the sequential update manner is that the parties can treat the statistical results provided by previous parties as their prior knowledge to direct how to learn ℕ. The core of DP-SUBN is the construction of the search frontier, which can be seen as a priori knowledge to guide the parties to update ℕ. To improve the fitness of ℕ and reduce the communication cost, we introduce a correlation-aware search frontier construction (CSFC) approach, where attribute pairs with strong correlations are used to construct the search frontier. In particular, to privately quantify the correlations of attribute pairs without introducing too much noise, we first propose a non-overlapping covering design (NOCD) method, and then introduce a dynamic programming method to find the optimal parameters used in NOCD to ensure that the injected noise is minimum. Through formal privacy analysis, we show that DP-SUBN satisfies ε-differential privacy for any local dataset. Extensive experiments on a real dataset demonstrate that DP-SUBN offers desirable data utility with low communication cost.","PeriodicalId":6883,"journal":{"name":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","volume":"65 5 1","pages":"205-216"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Differentially private multi-party high-dimensional data publishing\",\"authors\":\"Sen Su, Peng Tang, Xiang Cheng, R. Chen, Zequn Wu\",\"doi\":\"10.1109/ICDE.2016.7498241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the novel problem of publishing high-dimensional data in a distributed multi-party environment under differential privacy. In particular, with the assistance of a semi-trusted curator, the involved parties (i.e., local data owners) collectively generate a synthetic integrated dataset while satisfying ε-differential privacy for any local dataset. To solve this problem, we present a differentially private sequential update of Bayesian network (DP-SUBN) solution. In DP-SUBN, the parties and the curator collaboratively identify the Bayesian network ℕ that best fits the integrated dataset D in a sequential manner, from which a synthetic dataset can then be generated. The fundamental advantage of adopting the sequential update manner is that the parties can treat the statistical results provided by previous parties as their prior knowledge to direct how to learn ℕ. The core of DP-SUBN is the construction of the search frontier, which can be seen as a priori knowledge to guide the parties to update ℕ. To improve the fitness of ℕ and reduce the communication cost, we introduce a correlation-aware search frontier construction (CSFC) approach, where attribute pairs with strong correlations are used to construct the search frontier. In particular, to privately quantify the correlations of attribute pairs without introducing too much noise, we first propose a non-overlapping covering design (NOCD) method, and then introduce a dynamic programming method to find the optimal parameters used in NOCD to ensure that the injected noise is minimum. Through formal privacy analysis, we show that DP-SUBN satisfies ε-differential privacy for any local dataset. Extensive experiments on a real dataset demonstrate that DP-SUBN offers desirable data utility with low communication cost.\",\"PeriodicalId\":6883,\"journal\":{\"name\":\"2016 IEEE 32nd International Conference on Data Engineering (ICDE)\",\"volume\":\"65 5 1\",\"pages\":\"205-216\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 32nd International Conference on Data Engineering (ICDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2016.7498241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2016.7498241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

本文研究了差分隐私下分布式多方环境下高维数据发布的新问题。特别是,在半可信的管理员的帮助下,相关各方(即本地数据所有者)共同生成合成集成数据集,同时满足任何本地数据集的ε-差分隐私。为了解决这一问题,我们提出了一种差分私有贝叶斯网络序列更新(DP-SUBN)方案。在DP-SUBN中,各方和管理员以顺序的方式协作确定最适合集成数据集D的贝叶斯网络n,然后可以从中生成合成数据集。采用顺序更新方式的根本优点是,各方可以将之前各方提供的统计结果作为自己的先验知识来指导如何学习n。DP-SUBN的核心是搜索边界的构建,可以看作是指导各方更新n的先验知识。为了提高n的适应度和降低通信成本,我们引入了一种关联感知搜索边界构建(CSFC)方法,该方法使用具有强相关性的属性对来构建搜索边界。特别是,为了在不引入过多噪声的情况下私下量化属性对的相关性,我们首先提出了一种非重叠覆盖设计(NOCD)方法,然后引入动态规划方法来寻找NOCD中使用的最优参数,以确保注入的噪声最小。通过形式化的隐私分析,我们证明了DP-SUBN对任何局部数据集都满足ε-微分隐私。在实际数据集上进行的大量实验表明,DP-SUBN具有较低的通信成本和良好的数据效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Differentially private multi-party high-dimensional data publishing
In this paper, we study the novel problem of publishing high-dimensional data in a distributed multi-party environment under differential privacy. In particular, with the assistance of a semi-trusted curator, the involved parties (i.e., local data owners) collectively generate a synthetic integrated dataset while satisfying ε-differential privacy for any local dataset. To solve this problem, we present a differentially private sequential update of Bayesian network (DP-SUBN) solution. In DP-SUBN, the parties and the curator collaboratively identify the Bayesian network ℕ that best fits the integrated dataset D in a sequential manner, from which a synthetic dataset can then be generated. The fundamental advantage of adopting the sequential update manner is that the parties can treat the statistical results provided by previous parties as their prior knowledge to direct how to learn ℕ. The core of DP-SUBN is the construction of the search frontier, which can be seen as a priori knowledge to guide the parties to update ℕ. To improve the fitness of ℕ and reduce the communication cost, we introduce a correlation-aware search frontier construction (CSFC) approach, where attribute pairs with strong correlations are used to construct the search frontier. In particular, to privately quantify the correlations of attribute pairs without introducing too much noise, we first propose a non-overlapping covering design (NOCD) method, and then introduce a dynamic programming method to find the optimal parameters used in NOCD to ensure that the injected noise is minimum. Through formal privacy analysis, we show that DP-SUBN satisfies ε-differential privacy for any local dataset. Extensive experiments on a real dataset demonstrate that DP-SUBN offers desirable data utility with low communication cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data profiling SEED: A system for entity exploration and debugging in large-scale knowledge graphs TemProRA: Top-k temporal-probabilistic results analysis Durable graph pattern queries on historical graphs SCouT: Scalable coupled matrix-tensor factorization - algorithm and discoveries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1