{"title":"用鲁棒现场波动估计器检验跳跃","authors":"Yucheng Sun","doi":"10.1111/stan.12306","DOIUrl":null,"url":null,"abstract":"Jumps in the paths of efficient asset prices have important economic implications. Motivated by the issue of testing for jumps based on noisy high‐frequency data, we develop a novel spot volatility estimator, which is obtained by minimizing the sum of some Huber loss functions, and use it as an ingredient for jump detection. This type of estimators is uniformly consistent in estimating the spot volatilities of the efficient price at numerous time points. We further demonstrate the consistency of the proposed jump test based on the property of the novel spot volatility estimator. We show that in finite samples, the proposed volatility estimator and the test perform favorably compared to some competitors through Monte Carlo simulations. We also illustrate our methodology with the stock prices of Apple and Microsoft.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"47 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing for jumps with robust spot volatility estimators\",\"authors\":\"Yucheng Sun\",\"doi\":\"10.1111/stan.12306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Jumps in the paths of efficient asset prices have important economic implications. Motivated by the issue of testing for jumps based on noisy high‐frequency data, we develop a novel spot volatility estimator, which is obtained by minimizing the sum of some Huber loss functions, and use it as an ingredient for jump detection. This type of estimators is uniformly consistent in estimating the spot volatilities of the efficient price at numerous time points. We further demonstrate the consistency of the proposed jump test based on the property of the novel spot volatility estimator. We show that in finite samples, the proposed volatility estimator and the test perform favorably compared to some competitors through Monte Carlo simulations. We also illustrate our methodology with the stock prices of Apple and Microsoft.\",\"PeriodicalId\":51178,\"journal\":{\"name\":\"Statistica Neerlandica\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica Neerlandica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/stan.12306\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12306","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Testing for jumps with robust spot volatility estimators
Jumps in the paths of efficient asset prices have important economic implications. Motivated by the issue of testing for jumps based on noisy high‐frequency data, we develop a novel spot volatility estimator, which is obtained by minimizing the sum of some Huber loss functions, and use it as an ingredient for jump detection. This type of estimators is uniformly consistent in estimating the spot volatilities of the efficient price at numerous time points. We further demonstrate the consistency of the proposed jump test based on the property of the novel spot volatility estimator. We show that in finite samples, the proposed volatility estimator and the test perform favorably compared to some competitors through Monte Carlo simulations. We also illustrate our methodology with the stock prices of Apple and Microsoft.
期刊介绍:
Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.