下载PDF
{"title":"核磁共振用多层哈尔巴赫磁体的设计与仿真","authors":"Qiaoyan Chen, Guangcai Zhang, Yajie Xu, Xiaodong Yang","doi":"10.1002/cmr.b.21292","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Halbach magnet is a type of permanent magnet generating a relatively high and homogeneous magnetic field. It is suitable for Nuclear Magnetic Resonance (NMR) studies of small volume chemical or biological samples. In this article, the model of a Halbach magnet made from an odd number of cylindrical layers is proposed for the first time. Then after the optimization of interlayer distances for odd layers Halbach cylinders, the model is verified by the simulation with a magnet inner radius of 30 mm and an outer radius of 49 mm. Moreover, the disturbance of uniformity in 5 mm DSV (Diameter of Spherical Volume) is presented with errors in magnetic strength and angular variation. As a result, a minimum uniformity of 46 ppm inside a 5 mm DSV is achieved, while it increases practically in the presence of magnetic blocks errors. The good performance of the Halbach magnet with odd layers may find potential applications in NMR. © 2015 Wiley Periodicals, Inc. Concepts Magn Reson Part B (Magn Reson Engineering) 45B: 134–141, 2015</p>\n </div>","PeriodicalId":50623,"journal":{"name":"Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering","volume":"45 3","pages":"134-141"},"PeriodicalIF":0.9000,"publicationDate":"2015-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmr.b.21292","citationCount":"10","resultStr":"{\"title\":\"Design and simulation of a multilayer Halbach magnet for NMR\",\"authors\":\"Qiaoyan Chen, Guangcai Zhang, Yajie Xu, Xiaodong Yang\",\"doi\":\"10.1002/cmr.b.21292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Halbach magnet is a type of permanent magnet generating a relatively high and homogeneous magnetic field. It is suitable for Nuclear Magnetic Resonance (NMR) studies of small volume chemical or biological samples. In this article, the model of a Halbach magnet made from an odd number of cylindrical layers is proposed for the first time. Then after the optimization of interlayer distances for odd layers Halbach cylinders, the model is verified by the simulation with a magnet inner radius of 30 mm and an outer radius of 49 mm. Moreover, the disturbance of uniformity in 5 mm DSV (Diameter of Spherical Volume) is presented with errors in magnetic strength and angular variation. As a result, a minimum uniformity of 46 ppm inside a 5 mm DSV is achieved, while it increases practically in the presence of magnetic blocks errors. The good performance of the Halbach magnet with odd layers may find potential applications in NMR. © 2015 Wiley Periodicals, Inc. Concepts Magn Reson Part B (Magn Reson Engineering) 45B: 134–141, 2015</p>\\n </div>\",\"PeriodicalId\":50623,\"journal\":{\"name\":\"Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering\",\"volume\":\"45 3\",\"pages\":\"134-141\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2015-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cmr.b.21292\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cmr.b.21292\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmr.b.21292","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 10
引用
批量引用