M. Samoilov, V. Pavlov, N. Pavlyukov, Aleksandr Timirtdinov
{"title":"综合地质力学建模与水力压裂设计:从个案到整体结果","authors":"M. Samoilov, V. Pavlov, N. Pavlyukov, Aleksandr Timirtdinov","doi":"10.2118/206641-ms","DOIUrl":null,"url":null,"abstract":"\n \n \n The objective of the work is to present an adequate workflow for conditioning geomechanical data and hydraulic fracturing design, adjustment and simultaneous verification of a MEM and hydraulic fracture models. These approaches are relevant for greenfields and also can be used when changing field development systems: from vertical fracked wells to a system of horizontal wells with multistage fracs.\n \n \n \n The paper provides examples of issues in hydraulic fracturing planning due to poor attention to the reliability and robustness of geomechanical data. Given the critically of data quality, the authors describe a holistic approach used in collecting, analysing and conditioning data for building a MEM (1D; if necessary, 3D) as the basis of a frac design.\n Mini-frac is considered not only as a tool for setting the hydraulic fracturing design parameters, but also as a source of data for cross-calibration between the MEM and the hydraulic fracture models. Case studies of various HF models will demonstrate the influence of MEM-and-frac uncertainties and the tools for considering them in practical HF modelling. An approach to systematic clustering of input data for HF designs is described. The importance of measuring the fracture heights is stressed as a source of data for cross-calibration of HF and GM models.\n \n \n \n The correct sequence of work, data consolidation and successive data refinement helps to maintain the database of elastic and strength properties of various target reservoirs, which proves the demand for core analysis and well logging, as well as geomechanical modelling. The improved quality of HF designs leads to better reliability of forecasts and proposed field development and individual wellwork strategies.\n The close integration of GM studies and modelling with HF design building enhances the operation culture, accelerates and streamlines the HF model build and validation processes, which can be a pace-setting experience for other oil and gas industries that are GM data users.\n \n \n \n The TNNC and RN-CEPiTR teams work in close cooperation and provide GM and HF integration to assess the fracture height in the target reservoirs at the Company's assets in order to improve the quality of HF modelling. The uncertainty influence on the HF design is reducing, so as the risks of screen-out and the risks of breakthrough into undesirable zones.\n The approach streamlines the engineering support for the hydraulic fracturing activity and understanding of the fracture parameters as the operations move from single-stage hydraulic fracturing to the optimized field development using horizontal wells with multi-stage hydraulic fracturing.\n","PeriodicalId":11177,"journal":{"name":"Day 4 Fri, October 15, 2021","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated Geomechanical Modeling and Hydraulic Fracturing Design: From Particular Cases to the Overall Result\",\"authors\":\"M. Samoilov, V. Pavlov, N. Pavlyukov, Aleksandr Timirtdinov\",\"doi\":\"10.2118/206641-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n \\n The objective of the work is to present an adequate workflow for conditioning geomechanical data and hydraulic fracturing design, adjustment and simultaneous verification of a MEM and hydraulic fracture models. These approaches are relevant for greenfields and also can be used when changing field development systems: from vertical fracked wells to a system of horizontal wells with multistage fracs.\\n \\n \\n \\n The paper provides examples of issues in hydraulic fracturing planning due to poor attention to the reliability and robustness of geomechanical data. Given the critically of data quality, the authors describe a holistic approach used in collecting, analysing and conditioning data for building a MEM (1D; if necessary, 3D) as the basis of a frac design.\\n Mini-frac is considered not only as a tool for setting the hydraulic fracturing design parameters, but also as a source of data for cross-calibration between the MEM and the hydraulic fracture models. Case studies of various HF models will demonstrate the influence of MEM-and-frac uncertainties and the tools for considering them in practical HF modelling. An approach to systematic clustering of input data for HF designs is described. The importance of measuring the fracture heights is stressed as a source of data for cross-calibration of HF and GM models.\\n \\n \\n \\n The correct sequence of work, data consolidation and successive data refinement helps to maintain the database of elastic and strength properties of various target reservoirs, which proves the demand for core analysis and well logging, as well as geomechanical modelling. The improved quality of HF designs leads to better reliability of forecasts and proposed field development and individual wellwork strategies.\\n The close integration of GM studies and modelling with HF design building enhances the operation culture, accelerates and streamlines the HF model build and validation processes, which can be a pace-setting experience for other oil and gas industries that are GM data users.\\n \\n \\n \\n The TNNC and RN-CEPiTR teams work in close cooperation and provide GM and HF integration to assess the fracture height in the target reservoirs at the Company's assets in order to improve the quality of HF modelling. The uncertainty influence on the HF design is reducing, so as the risks of screen-out and the risks of breakthrough into undesirable zones.\\n The approach streamlines the engineering support for the hydraulic fracturing activity and understanding of the fracture parameters as the operations move from single-stage hydraulic fracturing to the optimized field development using horizontal wells with multi-stage hydraulic fracturing.\\n\",\"PeriodicalId\":11177,\"journal\":{\"name\":\"Day 4 Fri, October 15, 2021\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 4 Fri, October 15, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/206641-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Fri, October 15, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/206641-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integrated Geomechanical Modeling and Hydraulic Fracturing Design: From Particular Cases to the Overall Result
The objective of the work is to present an adequate workflow for conditioning geomechanical data and hydraulic fracturing design, adjustment and simultaneous verification of a MEM and hydraulic fracture models. These approaches are relevant for greenfields and also can be used when changing field development systems: from vertical fracked wells to a system of horizontal wells with multistage fracs.
The paper provides examples of issues in hydraulic fracturing planning due to poor attention to the reliability and robustness of geomechanical data. Given the critically of data quality, the authors describe a holistic approach used in collecting, analysing and conditioning data for building a MEM (1D; if necessary, 3D) as the basis of a frac design.
Mini-frac is considered not only as a tool for setting the hydraulic fracturing design parameters, but also as a source of data for cross-calibration between the MEM and the hydraulic fracture models. Case studies of various HF models will demonstrate the influence of MEM-and-frac uncertainties and the tools for considering them in practical HF modelling. An approach to systematic clustering of input data for HF designs is described. The importance of measuring the fracture heights is stressed as a source of data for cross-calibration of HF and GM models.
The correct sequence of work, data consolidation and successive data refinement helps to maintain the database of elastic and strength properties of various target reservoirs, which proves the demand for core analysis and well logging, as well as geomechanical modelling. The improved quality of HF designs leads to better reliability of forecasts and proposed field development and individual wellwork strategies.
The close integration of GM studies and modelling with HF design building enhances the operation culture, accelerates and streamlines the HF model build and validation processes, which can be a pace-setting experience for other oil and gas industries that are GM data users.
The TNNC and RN-CEPiTR teams work in close cooperation and provide GM and HF integration to assess the fracture height in the target reservoirs at the Company's assets in order to improve the quality of HF modelling. The uncertainty influence on the HF design is reducing, so as the risks of screen-out and the risks of breakthrough into undesirable zones.
The approach streamlines the engineering support for the hydraulic fracturing activity and understanding of the fracture parameters as the operations move from single-stage hydraulic fracturing to the optimized field development using horizontal wells with multi-stage hydraulic fracturing.