基于模糊粗糙集自定义相似性度量的肺癌微阵列基因表达数据属性选择

C. Arunkumar , S. Ramakrishnan
{"title":"基于模糊粗糙集自定义相似性度量的肺癌微阵列基因表达数据属性选择","authors":"C. Arunkumar ,&nbsp;S. Ramakrishnan","doi":"10.1016/j.fcij.2018.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>Microarray gene expression data plays a prominent role in feature selection that helps in diagnosis and treatment of a wide variety of diseases. Microarray gene expression data contains redundant feature genes of high dimensionality and smaller training and testing samples. This paper proposes a customized similarity measure using fuzzy rough quick reduct algorithm for attribute selection. Information Gain based entropy is used to reduce the dimensionality in the first stage and the proposed fuzzy rough quick reduct method that defines a customized similarity measure for selecting the minimum number of informative genes and removing the redundant genes is employed at the second stage. The proposed method is evaluated using leukemia, lung and ovarian cancer gene expression datasets on a random forest classifier. The proposed method produces 97.22%, 99.45% and 99.6% classifier accuracy on leukemia, lung and ovarian cancer gene expression datasets respectively. The research study is carried out using the R open source software package. The proposed method shows substantial improvement in the performance with respect to various statistical parameters like classification accuracy, precision, recall, f-measure and region of characteristic compared to available methods in literature.</p></div>","PeriodicalId":100561,"journal":{"name":"Future Computing and Informatics Journal","volume":"3 1","pages":"Pages 131-142"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.fcij.2018.02.002","citationCount":"29","resultStr":"{\"title\":\"Attribute selection using fuzzy roughset based customized similarity measure for lung cancer microarray gene expression data\",\"authors\":\"C. Arunkumar ,&nbsp;S. Ramakrishnan\",\"doi\":\"10.1016/j.fcij.2018.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microarray gene expression data plays a prominent role in feature selection that helps in diagnosis and treatment of a wide variety of diseases. Microarray gene expression data contains redundant feature genes of high dimensionality and smaller training and testing samples. This paper proposes a customized similarity measure using fuzzy rough quick reduct algorithm for attribute selection. Information Gain based entropy is used to reduce the dimensionality in the first stage and the proposed fuzzy rough quick reduct method that defines a customized similarity measure for selecting the minimum number of informative genes and removing the redundant genes is employed at the second stage. The proposed method is evaluated using leukemia, lung and ovarian cancer gene expression datasets on a random forest classifier. The proposed method produces 97.22%, 99.45% and 99.6% classifier accuracy on leukemia, lung and ovarian cancer gene expression datasets respectively. The research study is carried out using the R open source software package. The proposed method shows substantial improvement in the performance with respect to various statistical parameters like classification accuracy, precision, recall, f-measure and region of characteristic compared to available methods in literature.</p></div>\",\"PeriodicalId\":100561,\"journal\":{\"name\":\"Future Computing and Informatics Journal\",\"volume\":\"3 1\",\"pages\":\"Pages 131-142\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.fcij.2018.02.002\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Computing and Informatics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2314728817300338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Computing and Informatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2314728817300338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

微阵列基因表达数据在特征选择中发挥着重要作用,有助于多种疾病的诊断和治疗。微阵列基因表达数据包含冗余的高维特征基因和较小的训练和测试样本。本文提出了一种基于模糊粗糙快速约简算法的自定义相似性度量方法。第一阶段采用基于信息增益的熵降维,第二阶段采用所提出的模糊粗糙快速约简方法,定义自定义的相似性度量来选择最小信息基因数量并去除冗余基因。采用随机森林分类器对白血病、肺癌和卵巢癌基因表达数据集进行了评价。该方法在白血病、肺癌和卵巢癌基因表达数据集上的分类准确率分别为97.22%、99.45%和99.6%。本研究采用R开源软件包进行。与文献中已有的方法相比,该方法在分类准确率、精密度、召回率、f-measure和特征区域等统计参数方面的性能都有了较大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Attribute selection using fuzzy roughset based customized similarity measure for lung cancer microarray gene expression data

Microarray gene expression data plays a prominent role in feature selection that helps in diagnosis and treatment of a wide variety of diseases. Microarray gene expression data contains redundant feature genes of high dimensionality and smaller training and testing samples. This paper proposes a customized similarity measure using fuzzy rough quick reduct algorithm for attribute selection. Information Gain based entropy is used to reduce the dimensionality in the first stage and the proposed fuzzy rough quick reduct method that defines a customized similarity measure for selecting the minimum number of informative genes and removing the redundant genes is employed at the second stage. The proposed method is evaluated using leukemia, lung and ovarian cancer gene expression datasets on a random forest classifier. The proposed method produces 97.22%, 99.45% and 99.6% classifier accuracy on leukemia, lung and ovarian cancer gene expression datasets respectively. The research study is carried out using the R open source software package. The proposed method shows substantial improvement in the performance with respect to various statistical parameters like classification accuracy, precision, recall, f-measure and region of characteristic compared to available methods in literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Relationship between E-CRM, Service Quality, Customer Satisfaction, Trust, and Loyalty in banking Industry Enhancing query processing on stock market cloud-based database Crow search algorithm with time varying flight length Strategies for feature selection A Framework to Enhance the International Competitive Advantage of Information Technology Graduates A Literature Review on Agile Methodologies Quality, eXtreme Programming and SCRUM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1