{"title":"基于最大熵隐马尔可夫模型的语义查询扩展方法","authors":"R. Jothilakshmi, N. Shanthi, R. Babisaraswathi","doi":"10.1109/ICCCNT.2013.6726755","DOIUrl":null,"url":null,"abstract":"The ineffectiveness of information retrieval systems is mostly caused by the inaccurate query formed by a few keywords that reflect actual user information need. One well known technique to overcome this limitation is Automatic Query Expansion (AQE), whereby the user's original query is improved by adding new features with a related meaning. It has long been accepted that capturing term associations is a vital part of information retrieval. It is therefore mainly to consider whether many sources of support may be combined to forecast term relations more precisely. This is mainly significant when frustrating to predict the probability of relevance of a set of terms given a query, which may involve both lexical and semantic relations between the terms. This paper presents a approach to expand the user query using three level domain model such as conceptual level(underlying Domain knowledge), linguistic level(term vocabulary based on Wordnet), stochastic model ME-HMM2 which combines (HMM (Hidden Markov Model and Maximum Entropy(ME) models) stores the mapping between such levels, taking into account the linguistic context of words.","PeriodicalId":6330,"journal":{"name":"2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT)","volume":"62 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An approach for semantic query expansion based on maximum entropy-hidden Markov model\",\"authors\":\"R. Jothilakshmi, N. Shanthi, R. Babisaraswathi\",\"doi\":\"10.1109/ICCCNT.2013.6726755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ineffectiveness of information retrieval systems is mostly caused by the inaccurate query formed by a few keywords that reflect actual user information need. One well known technique to overcome this limitation is Automatic Query Expansion (AQE), whereby the user's original query is improved by adding new features with a related meaning. It has long been accepted that capturing term associations is a vital part of information retrieval. It is therefore mainly to consider whether many sources of support may be combined to forecast term relations more precisely. This is mainly significant when frustrating to predict the probability of relevance of a set of terms given a query, which may involve both lexical and semantic relations between the terms. This paper presents a approach to expand the user query using three level domain model such as conceptual level(underlying Domain knowledge), linguistic level(term vocabulary based on Wordnet), stochastic model ME-HMM2 which combines (HMM (Hidden Markov Model and Maximum Entropy(ME) models) stores the mapping between such levels, taking into account the linguistic context of words.\",\"PeriodicalId\":6330,\"journal\":{\"name\":\"2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT)\",\"volume\":\"62 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCNT.2013.6726755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCNT.2013.6726755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An approach for semantic query expansion based on maximum entropy-hidden Markov model
The ineffectiveness of information retrieval systems is mostly caused by the inaccurate query formed by a few keywords that reflect actual user information need. One well known technique to overcome this limitation is Automatic Query Expansion (AQE), whereby the user's original query is improved by adding new features with a related meaning. It has long been accepted that capturing term associations is a vital part of information retrieval. It is therefore mainly to consider whether many sources of support may be combined to forecast term relations more precisely. This is mainly significant when frustrating to predict the probability of relevance of a set of terms given a query, which may involve both lexical and semantic relations between the terms. This paper presents a approach to expand the user query using three level domain model such as conceptual level(underlying Domain knowledge), linguistic level(term vocabulary based on Wordnet), stochastic model ME-HMM2 which combines (HMM (Hidden Markov Model and Maximum Entropy(ME) models) stores the mapping between such levels, taking into account the linguistic context of words.