Stein的方法正关联随机变量与应用于伊辛和选民模型,键渗透和接触过程

IF 1.2 2区 数学 Q2 STATISTICS & PROBABILITY Annales De L Institut Henri Poincare-probabilites Et Statistiques Pub Date : 2016-03-17 DOI:10.1214/16-AIHP808
L. Goldstein, Nathakhun Wiroonsri
{"title":"Stein的方法正关联随机变量与应用于伊辛和选民模型,键渗透和接触过程","authors":"L. Goldstein, Nathakhun Wiroonsri","doi":"10.1214/16-AIHP808","DOIUrl":null,"url":null,"abstract":"We provide non-asymptotic $L^1$ bounds to the normal for four well-known models in statistical physics and particle systems in $\\mathbb{Z}^d$; the ferromagnetic nearest-neighbor Ising model, the supercritical bond percolation model, the voter model and the contact process. In the Ising model, we obtain an $L^1$ distance bound between the total magnetization and the normal distribution at any temperature when the magnetic moment parameter is nonzero, and when the inverse temperature is below critical and the magnetic moment parameter is zero. In the percolation model we obtain such a bound for the total number of points in a finite region belonging to an infinite cluster in dimensions $d \\ge 2$, in the voter model for the occupation time of the origin in dimensions $d \\ge 7$, and for finite time integrals of non-constant increasing cylindrical functions evaluated on the one dimensional supercritical contact process started in its unique invariant distribution. \nThe tool developed for these purposes is a version of Stein's method adapted to positively associated random variables. In one dimension, letting $\\boldsymbol{\\xi}=(\\xi_1,\\ldots,\\xi_m)$ be a positively associated mean zero random vector with components that obey the bound $|\\xi_i| \\le B, i=1,\\ldots,m$, and whose sum $W = \\sum_{i=1}^m \\xi_i$ has variance 1, it holds that $$ d_1 \\left(\\mathcal{L}(W),\\mathcal{L}(Z) \\right) \\leq 5B + \\sqrt{\\frac{8}{\\pi}}\\sum_{i \\neq j} \\mathbb{E}[\\xi_i \\xi_j] $$ where $Z$ has the standard normal distribution and $d_1(\\cdot,\\cdot)$ is the $L^1$ metric. Our methods apply in the multidimensional case with the $L^1$ metric replaced by a smooth function metric.","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"5 1","pages":"385-421"},"PeriodicalIF":1.2000,"publicationDate":"2016-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Stein’s method for positively associated random variables with applications to the Ising and voter models, bond percolation, and contact process\",\"authors\":\"L. Goldstein, Nathakhun Wiroonsri\",\"doi\":\"10.1214/16-AIHP808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide non-asymptotic $L^1$ bounds to the normal for four well-known models in statistical physics and particle systems in $\\\\mathbb{Z}^d$; the ferromagnetic nearest-neighbor Ising model, the supercritical bond percolation model, the voter model and the contact process. In the Ising model, we obtain an $L^1$ distance bound between the total magnetization and the normal distribution at any temperature when the magnetic moment parameter is nonzero, and when the inverse temperature is below critical and the magnetic moment parameter is zero. In the percolation model we obtain such a bound for the total number of points in a finite region belonging to an infinite cluster in dimensions $d \\\\ge 2$, in the voter model for the occupation time of the origin in dimensions $d \\\\ge 7$, and for finite time integrals of non-constant increasing cylindrical functions evaluated on the one dimensional supercritical contact process started in its unique invariant distribution. \\nThe tool developed for these purposes is a version of Stein's method adapted to positively associated random variables. In one dimension, letting $\\\\boldsymbol{\\\\xi}=(\\\\xi_1,\\\\ldots,\\\\xi_m)$ be a positively associated mean zero random vector with components that obey the bound $|\\\\xi_i| \\\\le B, i=1,\\\\ldots,m$, and whose sum $W = \\\\sum_{i=1}^m \\\\xi_i$ has variance 1, it holds that $$ d_1 \\\\left(\\\\mathcal{L}(W),\\\\mathcal{L}(Z) \\\\right) \\\\leq 5B + \\\\sqrt{\\\\frac{8}{\\\\pi}}\\\\sum_{i \\\\neq j} \\\\mathbb{E}[\\\\xi_i \\\\xi_j] $$ where $Z$ has the standard normal distribution and $d_1(\\\\cdot,\\\\cdot)$ is the $L^1$ metric. Our methods apply in the multidimensional case with the $L^1$ metric replaced by a smooth function metric.\",\"PeriodicalId\":7902,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"volume\":\"5 1\",\"pages\":\"385-421\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2016-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/16-AIHP808\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/16-AIHP808","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 13

摘要

我们提供了非渐近的 $L^1$ 统计物理和粒子系统中四个著名模型的法向边界 $\mathbb{Z}^d$;铁磁近邻Ising模型、超临界键渗流模型、选民模型和接触过程。在Ising模型中,我们得到 $L^1$ 在任意温度下,当磁矩参数不为零时,当逆温度低于临界温度且磁矩参数为零时,总磁化强度与正态分布之间的距离界。在渗流模型中,我们得到了在有限区域内属于无限维簇的点的总数的一个界 $d \ge 2$,在选民模型中为原点占用时间的维度 $d \ge 7$在一维超临界接触过程的唯一不变分布上求非常递增柱面函数的有限时间积分。为此目的开发的工具是Stein方法的一个版本,适用于正相关随机变量。在一个维度上,让 $\boldsymbol{\xi}=(\xi_1,\ldots,\xi_m)$ 是一个正相关的平均零随机向量,其分量服从边界 $|\xi_i| \le B, i=1,\ldots,m$,其和为 $W = \sum_{i=1}^m \xi_i$ 方差是1吗 $$ d_1 \left(\mathcal{L}(W),\mathcal{L}(Z) \right) \leq 5B + \sqrt{\frac{8}{\pi}}\sum_{i \neq j} \mathbb{E}[\xi_i \xi_j] $$ 在哪里 $Z$ 标准正态分布和 $d_1(\cdot,\cdot)$ 是? $L^1$ 公制。我们的方法适用于多维情况 $L^1$ 用光滑函数度量代替度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stein’s method for positively associated random variables with applications to the Ising and voter models, bond percolation, and contact process
We provide non-asymptotic $L^1$ bounds to the normal for four well-known models in statistical physics and particle systems in $\mathbb{Z}^d$; the ferromagnetic nearest-neighbor Ising model, the supercritical bond percolation model, the voter model and the contact process. In the Ising model, we obtain an $L^1$ distance bound between the total magnetization and the normal distribution at any temperature when the magnetic moment parameter is nonzero, and when the inverse temperature is below critical and the magnetic moment parameter is zero. In the percolation model we obtain such a bound for the total number of points in a finite region belonging to an infinite cluster in dimensions $d \ge 2$, in the voter model for the occupation time of the origin in dimensions $d \ge 7$, and for finite time integrals of non-constant increasing cylindrical functions evaluated on the one dimensional supercritical contact process started in its unique invariant distribution. The tool developed for these purposes is a version of Stein's method adapted to positively associated random variables. In one dimension, letting $\boldsymbol{\xi}=(\xi_1,\ldots,\xi_m)$ be a positively associated mean zero random vector with components that obey the bound $|\xi_i| \le B, i=1,\ldots,m$, and whose sum $W = \sum_{i=1}^m \xi_i$ has variance 1, it holds that $$ d_1 \left(\mathcal{L}(W),\mathcal{L}(Z) \right) \leq 5B + \sqrt{\frac{8}{\pi}}\sum_{i \neq j} \mathbb{E}[\xi_i \xi_j] $$ where $Z$ has the standard normal distribution and $d_1(\cdot,\cdot)$ is the $L^1$ metric. Our methods apply in the multidimensional case with the $L^1$ metric replaced by a smooth function metric.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
85
审稿时长
6-12 weeks
期刊介绍: The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.
期刊最新文献
Limit distributions of branching Markov chains Tightness of discrete Gibbsian line ensembles with exponential interaction Hamiltonians Functional CLT for non-Hermitian random matrices Reflecting Brownian motion in generalized parabolic domains: Explosion and superdiffusivity From the asymmetric simple exclusion processes to the stationary measures of the KPZ fixed point on an interval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1