6061铝合金空化试验中表面微槽的研究

Shuo Wang, F. Cheng, F. Wu, X. Peng, Yan-tao Cao
{"title":"6061铝合金空化试验中表面微槽的研究","authors":"Shuo Wang, F. Cheng, F. Wu, X. Peng, Yan-tao Cao","doi":"10.1177/13506501231153462","DOIUrl":null,"url":null,"abstract":"Microgrooves of different widths and microgrooves structures with varying widths were engraved on the surface of 6061 aluminum alloy using fiber laser marking equipment. In order to investigate the influence of the width of microgrooves on its cavitation behavior, cavitation tests on the microgroove structure were performed using an ultrasonic vibration apparatus. The hardness, the surface roughness, and the microscopic morphology of the samples were examined with a digital microhardness tester, a digital three-dimensional video microscope, and a scanning electron microscope, respectively. The results demonstrated that, increasing microgroove size was conducive to inhibition of cavitation erosion while decreasing microgroove size had an opposite effect. The surface microgrooves group elongated the incubation period of aluminum alloy in the cavitation tests, and noticeably increased the cavitation resistance of the aluminum alloy. It was also concluded that, the microgrooves group could transform microjets aiming at the alloy surface to the inside of microgrooves, and absorbed the impacted energy from microjets, leading to a remarkable anticavitation effect.","PeriodicalId":20570,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","volume":"5 1","pages":"1212 - 1223"},"PeriodicalIF":1.6000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study on surface microgrooves in cavitation test of 6061 aluminum alloy\",\"authors\":\"Shuo Wang, F. Cheng, F. Wu, X. Peng, Yan-tao Cao\",\"doi\":\"10.1177/13506501231153462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microgrooves of different widths and microgrooves structures with varying widths were engraved on the surface of 6061 aluminum alloy using fiber laser marking equipment. In order to investigate the influence of the width of microgrooves on its cavitation behavior, cavitation tests on the microgroove structure were performed using an ultrasonic vibration apparatus. The hardness, the surface roughness, and the microscopic morphology of the samples were examined with a digital microhardness tester, a digital three-dimensional video microscope, and a scanning electron microscope, respectively. The results demonstrated that, increasing microgroove size was conducive to inhibition of cavitation erosion while decreasing microgroove size had an opposite effect. The surface microgrooves group elongated the incubation period of aluminum alloy in the cavitation tests, and noticeably increased the cavitation resistance of the aluminum alloy. It was also concluded that, the microgrooves group could transform microjets aiming at the alloy surface to the inside of microgrooves, and absorbed the impacted energy from microjets, leading to a remarkable anticavitation effect.\",\"PeriodicalId\":20570,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"volume\":\"5 1\",\"pages\":\"1212 - 1223\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/13506501231153462\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13506501231153462","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用光纤激光打标设备在6061铝合金表面刻出不同宽度的微槽和不同宽度的微槽结构。为了研究微槽宽度对其空化行为的影响,利用超声振动仪对微槽结构进行了空化试验。分别用数字显微硬度计、数字三维视频显微镜和扫描电镜检测样品的硬度、表面粗糙度和显微形貌。结果表明,增大微槽尺寸有利于抑制空化侵蚀,减小微槽尺寸则相反。表面微槽组延长了铝合金在空化试验中的潜伏期,显著提高了铝合金的抗空化能力。结果表明,微沟槽群能将瞄准合金表面的微射流转化为微沟槽内部,并能吸收微射流的冲击能量,产生显著的抗空泡效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A study on surface microgrooves in cavitation test of 6061 aluminum alloy
Microgrooves of different widths and microgrooves structures with varying widths were engraved on the surface of 6061 aluminum alloy using fiber laser marking equipment. In order to investigate the influence of the width of microgrooves on its cavitation behavior, cavitation tests on the microgroove structure were performed using an ultrasonic vibration apparatus. The hardness, the surface roughness, and the microscopic morphology of the samples were examined with a digital microhardness tester, a digital three-dimensional video microscope, and a scanning electron microscope, respectively. The results demonstrated that, increasing microgroove size was conducive to inhibition of cavitation erosion while decreasing microgroove size had an opposite effect. The surface microgrooves group elongated the incubation period of aluminum alloy in the cavitation tests, and noticeably increased the cavitation resistance of the aluminum alloy. It was also concluded that, the microgrooves group could transform microjets aiming at the alloy surface to the inside of microgrooves, and absorbed the impacted energy from microjets, leading to a remarkable anticavitation effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
5.00%
发文量
110
审稿时长
6.1 months
期刊介绍: The Journal of Engineering Tribology publishes high-quality, peer-reviewed papers from academia and industry worldwide on the engineering science associated with tribology and its applications. "I am proud to say that I have been part of the tribology research community for almost 20 years. That community has always seemed to me to be highly active, progressive, and closely knit. The conferences are well attended and are characterised by a warmth and friendliness that transcends national boundaries. I see Part J as being an important part of that community, giving us an outlet to publish and promote our scholarly activities. I very much look forward to my term of office as editor of your Journal. I hope you will continue to submit papers, help out with reviewing, and most importantly to read and talk about the work you will find there." Professor Rob Dwyer-Joyce, Sheffield University, UK This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Investigation of nanoparticle diameter influences on performance of hydrodynamic journal bearings operating with nanolubricant Effects of a typical shear dependent viscosity on analytical elastohydrodynamic lubrication film thickness predictions: A critical issue for the classical approach Research progress of surface texturing to improve the tribological properties: A review Study of the effect of laser textured rotors on the starting performance of metal–rubber mating pairs under different lubricating media environments Hybrid lubrication model study of slip ring combination seal under the influence of frictional heat
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1