一种基于kd树的高级k近邻分类算法

Wenfeng Hou, Daiwei Li, Chao Xu, Haiqing Zhang, Tianrui Li
{"title":"一种基于kd树的高级k近邻分类算法","authors":"Wenfeng Hou, Daiwei Li, Chao Xu, Haiqing Zhang, Tianrui Li","doi":"10.1109/IICSPI.2018.8690508","DOIUrl":null,"url":null,"abstract":"KNN (K Nearest-neighbor Classification) is a lazy learning classification algorithm, where it only memorizes the training dataset instead of providing a defined discriminative function. KNN tends to search the nearest neighbor(s) for a target in the entire training set, hence, the prediction step of KNN is quite time consuming. KD-tree (K Dimensional-tree) is a multi-dimensional binary tree, which is a specific storage structure for efficiently representing training data. Therefore, the paper takes the advantages of KNN and KD-tree and then proposes a new classification algorithm called KNN-KD-tree. Eleven datasets have been adopted to conduct experiments. The experiments have shown that the proposed KNN-KD-tree algorithm can efficiently reduce time complexity and significantly improve search performance.","PeriodicalId":6673,"journal":{"name":"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)","volume":"3 1","pages":"902-905"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"An Advanced k Nearest Neighbor Classification Algorithm Based on KD-tree\",\"authors\":\"Wenfeng Hou, Daiwei Li, Chao Xu, Haiqing Zhang, Tianrui Li\",\"doi\":\"10.1109/IICSPI.2018.8690508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"KNN (K Nearest-neighbor Classification) is a lazy learning classification algorithm, where it only memorizes the training dataset instead of providing a defined discriminative function. KNN tends to search the nearest neighbor(s) for a target in the entire training set, hence, the prediction step of KNN is quite time consuming. KD-tree (K Dimensional-tree) is a multi-dimensional binary tree, which is a specific storage structure for efficiently representing training data. Therefore, the paper takes the advantages of KNN and KD-tree and then proposes a new classification algorithm called KNN-KD-tree. Eleven datasets have been adopted to conduct experiments. The experiments have shown that the proposed KNN-KD-tree algorithm can efficiently reduce time complexity and significantly improve search performance.\",\"PeriodicalId\":6673,\"journal\":{\"name\":\"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)\",\"volume\":\"3 1\",\"pages\":\"902-905\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IICSPI.2018.8690508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICSPI.2018.8690508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

KNN (K最近邻分类)是一种惰性学习分类算法,它只记忆训练数据集,而不提供定义的判别函数。KNN倾向于在整个训练集中搜索目标的最近邻居,因此,KNN的预测步骤相当耗时。KD-tree (K Dimensional-tree)是一种多维二叉树,是一种有效表示训练数据的特定存储结构。因此,本文利用KNN和KD-tree的优点,提出了一种新的分类算法KNN-KD-tree。采用了11个数据集进行实验。实验表明,所提出的KNN-KD-tree算法能够有效降低时间复杂度,显著提高搜索性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Advanced k Nearest Neighbor Classification Algorithm Based on KD-tree
KNN (K Nearest-neighbor Classification) is a lazy learning classification algorithm, where it only memorizes the training dataset instead of providing a defined discriminative function. KNN tends to search the nearest neighbor(s) for a target in the entire training set, hence, the prediction step of KNN is quite time consuming. KD-tree (K Dimensional-tree) is a multi-dimensional binary tree, which is a specific storage structure for efficiently representing training data. Therefore, the paper takes the advantages of KNN and KD-tree and then proposes a new classification algorithm called KNN-KD-tree. Eleven datasets have been adopted to conduct experiments. The experiments have shown that the proposed KNN-KD-tree algorithm can efficiently reduce time complexity and significantly improve search performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Functional Safety Analysis and Design of Dual-Motor Hybrid Bus Clutch System Methods of Resource Allocation with Conflict Detection Exploration and Application of Sheet Metal Technology on Pit Package Repairing Study on Standardization of Electrolytic Trace Moisture Meter in Safety Construction of CNG Refueling Station The Research and Analysis of Big Data Application on Distribution Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1