Wan Emlin Suliza, Wan Abd Rashid, M. Z. Jamaludin, N. A. Rahman, M. Gamel, H. J. Lee, P. Ker
{"title":"锑化镓热光伏:不同滤光波长下的模拟与电学特性","authors":"Wan Emlin Suliza, Wan Abd Rashid, M. Z. Jamaludin, N. A. Rahman, M. Gamel, H. J. Lee, P. Ker","doi":"10.1109/ICP46580.2020.9206487","DOIUrl":null,"url":null,"abstract":"Gallium Antimonide (GaSb) Thermophotovoltaic (TPV) cell is a well-known device for waste-heat harvesting technology. To date, the conversion efficiency of the GaSb TPV cell remains low due to the presence of electrical and spectral losses. In this study, a GaSb TPV cell model is developed using the Silvaco TCAD simulation software. Validation on the simulation model was performed under atmospheric (AM) 1.5 standard test condition (STC) and TPV illumination conditions. Through the validation processes, a set of GaSb physical parameters that are reliable to be used for GaSb TPV cell simulation was established. Under AM1.5 testing condition, the electrical characteristic and performance of GaSb TPV of the reference cell were obtained from an experimental characterization on commercialized devices. A deviation in fill factor and cell efficiency was found between the cell sample and simulation model under AM1.5 illumination. This is due to the presence of resistance losses in the device. Nevertheless, a percentage error of below 3% was achieved under 1200 ° C TPV spectrum. Besides, it was found that a spectral filter that cuts at 2 μm increases the cell efficiency from 11.51% to 19.10% with a power output of 1.33 W/cm2. The finding in this study demonstrates the importance of minimizing the electrical losses and the determination of an optimal filtered spectrum wavelength for developing highperformance GaSb TPV cell.","PeriodicalId":6758,"journal":{"name":"2020 IEEE 8th International Conference on Photonics (ICP)","volume":"7 1","pages":"44-47"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gallium Antimonide Thermophotovoltaic: Simulation and Electrical Characterization Under Different Spectral Filtration Wavelengths\",\"authors\":\"Wan Emlin Suliza, Wan Abd Rashid, M. Z. Jamaludin, N. A. Rahman, M. Gamel, H. J. Lee, P. Ker\",\"doi\":\"10.1109/ICP46580.2020.9206487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gallium Antimonide (GaSb) Thermophotovoltaic (TPV) cell is a well-known device for waste-heat harvesting technology. To date, the conversion efficiency of the GaSb TPV cell remains low due to the presence of electrical and spectral losses. In this study, a GaSb TPV cell model is developed using the Silvaco TCAD simulation software. Validation on the simulation model was performed under atmospheric (AM) 1.5 standard test condition (STC) and TPV illumination conditions. Through the validation processes, a set of GaSb physical parameters that are reliable to be used for GaSb TPV cell simulation was established. Under AM1.5 testing condition, the electrical characteristic and performance of GaSb TPV of the reference cell were obtained from an experimental characterization on commercialized devices. A deviation in fill factor and cell efficiency was found between the cell sample and simulation model under AM1.5 illumination. This is due to the presence of resistance losses in the device. Nevertheless, a percentage error of below 3% was achieved under 1200 ° C TPV spectrum. Besides, it was found that a spectral filter that cuts at 2 μm increases the cell efficiency from 11.51% to 19.10% with a power output of 1.33 W/cm2. The finding in this study demonstrates the importance of minimizing the electrical losses and the determination of an optimal filtered spectrum wavelength for developing highperformance GaSb TPV cell.\",\"PeriodicalId\":6758,\"journal\":{\"name\":\"2020 IEEE 8th International Conference on Photonics (ICP)\",\"volume\":\"7 1\",\"pages\":\"44-47\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 8th International Conference on Photonics (ICP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICP46580.2020.9206487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 8th International Conference on Photonics (ICP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICP46580.2020.9206487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gallium Antimonide Thermophotovoltaic: Simulation and Electrical Characterization Under Different Spectral Filtration Wavelengths
Gallium Antimonide (GaSb) Thermophotovoltaic (TPV) cell is a well-known device for waste-heat harvesting technology. To date, the conversion efficiency of the GaSb TPV cell remains low due to the presence of electrical and spectral losses. In this study, a GaSb TPV cell model is developed using the Silvaco TCAD simulation software. Validation on the simulation model was performed under atmospheric (AM) 1.5 standard test condition (STC) and TPV illumination conditions. Through the validation processes, a set of GaSb physical parameters that are reliable to be used for GaSb TPV cell simulation was established. Under AM1.5 testing condition, the electrical characteristic and performance of GaSb TPV of the reference cell were obtained from an experimental characterization on commercialized devices. A deviation in fill factor and cell efficiency was found between the cell sample and simulation model under AM1.5 illumination. This is due to the presence of resistance losses in the device. Nevertheless, a percentage error of below 3% was achieved under 1200 ° C TPV spectrum. Besides, it was found that a spectral filter that cuts at 2 μm increases the cell efficiency from 11.51% to 19.10% with a power output of 1.33 W/cm2. The finding in this study demonstrates the importance of minimizing the electrical losses and the determination of an optimal filtered spectrum wavelength for developing highperformance GaSb TPV cell.