增材制造高熵合金FeCoNiAlxMnx的磁相识别

Aleksander Larsen, A. Poulia, A. Azar, C. Bazioti, P. Carvalho, A. Gunnæs, B. Belle, S. Diplas, P. Mikheenko
{"title":"增材制造高熵合金FeCoNiAlxMnx的磁相识别","authors":"Aleksander Larsen, A. Poulia, A. Azar, C. Bazioti, P. Carvalho, A. Gunnæs, B. Belle, S. Diplas, P. Mikheenko","doi":"10.1109/NAP51885.2021.9568591","DOIUrl":null,"url":null,"abstract":"High-Entropy Alloys are advanced technological materials composed of several (typically five) elements in nearly equal atomic concentration. By forming these alloys, previously unknown phase fields of multidimensional phase diagrams are explored. The large number of possible substitutions of constituent elements on crystal lattice sites justifies the dominant contribution of mixing entropy over enthalpy to the free energy reduction. This leads to the formation of phases, which otherwise could not be formed in alloys with fewer main alloying elements. Here we explore magnetic and compositional properties of a High-Entropy Alloy, namely FeCoNiAlx Mnx (0.05 ≤ x ≤ 3.08), composed of magnetic (Fe, Co, Ni) and non-magnetic elements (Al, Mn). By magnetic force microscopy of a selected area, it is observed that for intermediate to low Al and Mn contents, the alloy splits in two major crystallographic phases with different magnetic properties. Elemental maps of the same area were recorded with energy dispersive spectroscopy and scanning electron microscopy. Counterintuitively, it was found that the phase rich in non-magnetic Al has stronger magnetism than the phase rich in Fe. This work showcases possible applications of the here presented HEAs as soft magnetic materials in functional magnetic elements.","PeriodicalId":6735,"journal":{"name":"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)","volume":"17 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Identifying Magnetic Phases in Additively Manufactured High-Entropy Alloy FeCoNiAlxMnx\",\"authors\":\"Aleksander Larsen, A. Poulia, A. Azar, C. Bazioti, P. Carvalho, A. Gunnæs, B. Belle, S. Diplas, P. Mikheenko\",\"doi\":\"10.1109/NAP51885.2021.9568591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-Entropy Alloys are advanced technological materials composed of several (typically five) elements in nearly equal atomic concentration. By forming these alloys, previously unknown phase fields of multidimensional phase diagrams are explored. The large number of possible substitutions of constituent elements on crystal lattice sites justifies the dominant contribution of mixing entropy over enthalpy to the free energy reduction. This leads to the formation of phases, which otherwise could not be formed in alloys with fewer main alloying elements. Here we explore magnetic and compositional properties of a High-Entropy Alloy, namely FeCoNiAlx Mnx (0.05 ≤ x ≤ 3.08), composed of magnetic (Fe, Co, Ni) and non-magnetic elements (Al, Mn). By magnetic force microscopy of a selected area, it is observed that for intermediate to low Al and Mn contents, the alloy splits in two major crystallographic phases with different magnetic properties. Elemental maps of the same area were recorded with energy dispersive spectroscopy and scanning electron microscopy. Counterintuitively, it was found that the phase rich in non-magnetic Al has stronger magnetism than the phase rich in Fe. This work showcases possible applications of the here presented HEAs as soft magnetic materials in functional magnetic elements.\",\"PeriodicalId\":6735,\"journal\":{\"name\":\"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)\",\"volume\":\"17 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAP51885.2021.9568591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAP51885.2021.9568591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

高熵合金是由原子浓度几乎相等的几种(通常是五种)元素组成的先进技术材料。通过形成这些合金,探索了以前未知的多维相图相场。晶格位置上大量可能的组成元素取代证明了混合熵比焓对自由能降低的主要贡献。这导致相的形成,否则在主要合金元素较少的合金中不可能形成相。本文研究了一种由磁性元素(Fe, Co, Ni)和非磁性元素(Al, Mn)组成的高熵合金FeCoNiAlx Mnx(0.05≤x≤3.08)的磁性和成分性能。通过选定区域的磁力显微镜观察,在中低Al和Mn含量的情况下,合金分裂为两个主要的具有不同磁性能的晶相。用能量色散光谱和扫描电镜记录了同一区域的元素图。与直觉相反,发现富非磁性Al的相比富Fe的相具有更强的磁性。本工作展示了HEAs作为软磁材料在功能磁性元件中的可能应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying Magnetic Phases in Additively Manufactured High-Entropy Alloy FeCoNiAlxMnx
High-Entropy Alloys are advanced technological materials composed of several (typically five) elements in nearly equal atomic concentration. By forming these alloys, previously unknown phase fields of multidimensional phase diagrams are explored. The large number of possible substitutions of constituent elements on crystal lattice sites justifies the dominant contribution of mixing entropy over enthalpy to the free energy reduction. This leads to the formation of phases, which otherwise could not be formed in alloys with fewer main alloying elements. Here we explore magnetic and compositional properties of a High-Entropy Alloy, namely FeCoNiAlx Mnx (0.05 ≤ x ≤ 3.08), composed of magnetic (Fe, Co, Ni) and non-magnetic elements (Al, Mn). By magnetic force microscopy of a selected area, it is observed that for intermediate to low Al and Mn contents, the alloy splits in two major crystallographic phases with different magnetic properties. Elemental maps of the same area were recorded with energy dispersive spectroscopy and scanning electron microscopy. Counterintuitively, it was found that the phase rich in non-magnetic Al has stronger magnetism than the phase rich in Fe. This work showcases possible applications of the here presented HEAs as soft magnetic materials in functional magnetic elements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of Prolonged Annealing on Properties of Y2O3 Nanosized Ceramics Influence of Annealing on the Structure and Mechanical Properties of PECVD Si-C-N Films Nickel and Zinc Hydroxycarbonates are Precursors of Nanoscale Oxides Uncertainty Quantification of Charge Transfer through a Nanowire Resonant-Tunneling Diode with an ADHIE-FDTD Method [Copyright notice]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1