Jiahui Zhang, Zhuo Liu, Tianzhen Wang, M. Benbouzid, Yide Wang
{"title":"基于数据驱动的级联七电平逆变器臂隔离与重构容错控制方法","authors":"Jiahui Zhang, Zhuo Liu, Tianzhen Wang, M. Benbouzid, Yide Wang","doi":"10.1109/DDCLS.2018.8516073","DOIUrl":null,"url":null,"abstract":"Inverts, especially multi-level inverters are widely used in many fields, such as industrial production, transportation, aviation and so on. So great significance should be attached to the diagnosis and fault tolerance of inverters to keep the stability of systems. Data-driven approaches make full use of the process data to monitor the systems, so the voltage signals are collected firstly and then preprocessed and processed by specific strategy, fault labels will be produced hereafter. When the fault labels from data-driven fault detection and diagnosis system are generated, relevant fault tolerant control method will be activated in fault tolerant control system. Some measurements are necessary to achieve the higher utilization ratio of healthy IGBTs and sinusoidal output voltage. Based on above consideration, a group isolation and reconfiguration fault tolerant control method based on data-driven methodology for cascaded seven-level inverter is proposed here to reconfigure the SPWM, in which every H-bridge is divided into two groups. The simulation of cascaded seven-level inverter is built and the result indicates that the utilization of healthy IGBTs is improved.","PeriodicalId":6565,"journal":{"name":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"31 1","pages":"939-943"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An Arm Isolation and Reconfiguration Fault Tolerant Control Method Based on Data-driven Methodology for Cascaded Seven-level Inverter\",\"authors\":\"Jiahui Zhang, Zhuo Liu, Tianzhen Wang, M. Benbouzid, Yide Wang\",\"doi\":\"10.1109/DDCLS.2018.8516073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inverts, especially multi-level inverters are widely used in many fields, such as industrial production, transportation, aviation and so on. So great significance should be attached to the diagnosis and fault tolerance of inverters to keep the stability of systems. Data-driven approaches make full use of the process data to monitor the systems, so the voltage signals are collected firstly and then preprocessed and processed by specific strategy, fault labels will be produced hereafter. When the fault labels from data-driven fault detection and diagnosis system are generated, relevant fault tolerant control method will be activated in fault tolerant control system. Some measurements are necessary to achieve the higher utilization ratio of healthy IGBTs and sinusoidal output voltage. Based on above consideration, a group isolation and reconfiguration fault tolerant control method based on data-driven methodology for cascaded seven-level inverter is proposed here to reconfigure the SPWM, in which every H-bridge is divided into two groups. The simulation of cascaded seven-level inverter is built and the result indicates that the utilization of healthy IGBTs is improved.\",\"PeriodicalId\":6565,\"journal\":{\"name\":\"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)\",\"volume\":\"31 1\",\"pages\":\"939-943\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDCLS.2018.8516073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2018.8516073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Arm Isolation and Reconfiguration Fault Tolerant Control Method Based on Data-driven Methodology for Cascaded Seven-level Inverter
Inverts, especially multi-level inverters are widely used in many fields, such as industrial production, transportation, aviation and so on. So great significance should be attached to the diagnosis and fault tolerance of inverters to keep the stability of systems. Data-driven approaches make full use of the process data to monitor the systems, so the voltage signals are collected firstly and then preprocessed and processed by specific strategy, fault labels will be produced hereafter. When the fault labels from data-driven fault detection and diagnosis system are generated, relevant fault tolerant control method will be activated in fault tolerant control system. Some measurements are necessary to achieve the higher utilization ratio of healthy IGBTs and sinusoidal output voltage. Based on above consideration, a group isolation and reconfiguration fault tolerant control method based on data-driven methodology for cascaded seven-level inverter is proposed here to reconfigure the SPWM, in which every H-bridge is divided into two groups. The simulation of cascaded seven-level inverter is built and the result indicates that the utilization of healthy IGBTs is improved.