{"title":"探测频率低于1khz的气相电池原子电测定法","authors":"Y. Jau, T. Carter","doi":"10.1103/physrevapplied.13.054034","DOIUrl":null,"url":null,"abstract":"Rydberg-assisted atomic electrometry using alkali-metal atoms contained inside a vacuum environment for detecting external electric fields (E-fields) at frequencies $<$ a few kHz has been quite challenging due to the low-frequency E-field screening effect that is caused by the alkali-metal atoms adsorbed on the inner surface of the container. We report a very slow E-field screening phenomenon with a time scale up to $\\sim$ second on a rubidium (Rb) vapor cell that is made of monocrystalline sapphire. Using this sapphire-made Rb vapor cell with optically induced, internal bias E-field, we demonstrate vapor-cell-based, low-frequency atomic electrometry that responds to the E-field strength linearly. Limited by the given experimental conditions, this demonstrated atomic electrometer uses an active volume of 11 mm$^3$ and delivers a spectral noise floor around $0.34$ (mV/m)/$\\sqrt{\\rm Hz}$ and the 3-dB low cut-off frequency around 770 Hz inside the vapor cell. This work investigates a regime of vapor-cell-based atomic electrometry that was seldom studied before, which may enable more applications that utilize atomic E-field sensing technology.","PeriodicalId":8441,"journal":{"name":"arXiv: Atomic Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Vapor-Cell-Based Atomic Electrometry for Detection Frequencies below 1 kHz\",\"authors\":\"Y. Jau, T. Carter\",\"doi\":\"10.1103/physrevapplied.13.054034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rydberg-assisted atomic electrometry using alkali-metal atoms contained inside a vacuum environment for detecting external electric fields (E-fields) at frequencies $<$ a few kHz has been quite challenging due to the low-frequency E-field screening effect that is caused by the alkali-metal atoms adsorbed on the inner surface of the container. We report a very slow E-field screening phenomenon with a time scale up to $\\\\sim$ second on a rubidium (Rb) vapor cell that is made of monocrystalline sapphire. Using this sapphire-made Rb vapor cell with optically induced, internal bias E-field, we demonstrate vapor-cell-based, low-frequency atomic electrometry that responds to the E-field strength linearly. Limited by the given experimental conditions, this demonstrated atomic electrometer uses an active volume of 11 mm$^3$ and delivers a spectral noise floor around $0.34$ (mV/m)/$\\\\sqrt{\\\\rm Hz}$ and the 3-dB low cut-off frequency around 770 Hz inside the vapor cell. This work investigates a regime of vapor-cell-based atomic electrometry that was seldom studied before, which may enable more applications that utilize atomic E-field sensing technology.\",\"PeriodicalId\":8441,\"journal\":{\"name\":\"arXiv: Atomic Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Atomic Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevapplied.13.054034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Atomic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevapplied.13.054034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vapor-Cell-Based Atomic Electrometry for Detection Frequencies below 1 kHz
Rydberg-assisted atomic electrometry using alkali-metal atoms contained inside a vacuum environment for detecting external electric fields (E-fields) at frequencies $<$ a few kHz has been quite challenging due to the low-frequency E-field screening effect that is caused by the alkali-metal atoms adsorbed on the inner surface of the container. We report a very slow E-field screening phenomenon with a time scale up to $\sim$ second on a rubidium (Rb) vapor cell that is made of monocrystalline sapphire. Using this sapphire-made Rb vapor cell with optically induced, internal bias E-field, we demonstrate vapor-cell-based, low-frequency atomic electrometry that responds to the E-field strength linearly. Limited by the given experimental conditions, this demonstrated atomic electrometer uses an active volume of 11 mm$^3$ and delivers a spectral noise floor around $0.34$ (mV/m)/$\sqrt{\rm Hz}$ and the 3-dB low cut-off frequency around 770 Hz inside the vapor cell. This work investigates a regime of vapor-cell-based atomic electrometry that was seldom studied before, which may enable more applications that utilize atomic E-field sensing technology.