{"title":"基于多尺度特征融合的光场图像超分辨率","authors":"Z. Yuanyuan, Shi Shengxian","doi":"10.12086/OEE.2020.200007","DOIUrl":null,"url":null,"abstract":"As a new generation of the imaging device, light-field camera can simultaneously capture the spatial position and incident angle of light rays. However, the recorded light-field has a trade-off between spatial resolution and angular resolution. Especially the application range of light-field cameras is restricted by the limited spatial resolution of sub-aperture images. Therefore, a light-field super-resolution neural network that fuses multi-scale features to obtain super-resolved light-field is proposed in this paper. The deep-learning-based network framework contains three major modules: multi-scale feature extraction, global feature fusion, and up-sampling. Firstly, inherent structural features in the 4D light-field are learned through the multi-scale feature extraction module, and then the fusion module is exploited for feature fusion and enhancement. Finally, the up-sampling module is used to achieve light-field super-resolution. The experimental results on the synthetic light-field dataset and real-world light-field dataset showed that this method outperforms other state-of-the-art methods in both visual and numerical evaluations. In addition, the super-resolved light-field images were applied to depth estimation in this paper, the results illustrated that the disparity map was enhanced through the light-field spatial super-resolution.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Light-field image super-resolution based on multi-scale feature fusion\",\"authors\":\"Z. Yuanyuan, Shi Shengxian\",\"doi\":\"10.12086/OEE.2020.200007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a new generation of the imaging device, light-field camera can simultaneously capture the spatial position and incident angle of light rays. However, the recorded light-field has a trade-off between spatial resolution and angular resolution. Especially the application range of light-field cameras is restricted by the limited spatial resolution of sub-aperture images. Therefore, a light-field super-resolution neural network that fuses multi-scale features to obtain super-resolved light-field is proposed in this paper. The deep-learning-based network framework contains three major modules: multi-scale feature extraction, global feature fusion, and up-sampling. Firstly, inherent structural features in the 4D light-field are learned through the multi-scale feature extraction module, and then the fusion module is exploited for feature fusion and enhancement. Finally, the up-sampling module is used to achieve light-field super-resolution. The experimental results on the synthetic light-field dataset and real-world light-field dataset showed that this method outperforms other state-of-the-art methods in both visual and numerical evaluations. In addition, the super-resolved light-field images were applied to depth estimation in this paper, the results illustrated that the disparity map was enhanced through the light-field spatial super-resolution.\",\"PeriodicalId\":39552,\"journal\":{\"name\":\"光电工程\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"光电工程\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.12086/OEE.2020.200007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2020.200007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Light-field image super-resolution based on multi-scale feature fusion
As a new generation of the imaging device, light-field camera can simultaneously capture the spatial position and incident angle of light rays. However, the recorded light-field has a trade-off between spatial resolution and angular resolution. Especially the application range of light-field cameras is restricted by the limited spatial resolution of sub-aperture images. Therefore, a light-field super-resolution neural network that fuses multi-scale features to obtain super-resolved light-field is proposed in this paper. The deep-learning-based network framework contains three major modules: multi-scale feature extraction, global feature fusion, and up-sampling. Firstly, inherent structural features in the 4D light-field are learned through the multi-scale feature extraction module, and then the fusion module is exploited for feature fusion and enhancement. Finally, the up-sampling module is used to achieve light-field super-resolution. The experimental results on the synthetic light-field dataset and real-world light-field dataset showed that this method outperforms other state-of-the-art methods in both visual and numerical evaluations. In addition, the super-resolved light-field images were applied to depth estimation in this paper, the results illustrated that the disparity map was enhanced through the light-field spatial super-resolution.