利用三端铁电记忆电阻器的生物启发学习装置

M. Ueda, Y. Kaneko, Y. Nishitani, T. Morie, E. Fujii
{"title":"利用三端铁电记忆电阻器的生物启发学习装置","authors":"M. Ueda, Y. Kaneko, Y. Nishitani, T. Morie, E. Fujii","doi":"10.1109/DRC.2012.6256971","DOIUrl":null,"url":null,"abstract":"A simple synaptic device with a spike-timing-dependent synaptic plasticity (STDP) learning function is a key device that can realize a brain-like processor. STDP is a learning mechanism of synapses in mammalian brains [1]. A memristor [2, 3] is a promising candidate for synaptic devices. However, since the conventional memristor is a two-terminal electric element and the signal magnitude at learning exceeds the processing, it is difficult to realize STDP learning by simultaneously processing the signal. We proposed a unique three-terminal memristor using a ferroelectric thin film [4]. Its three-terminal device structure enables the STDP function without disturbing the signal processing between neurons (Fig. 1). This all oxide memristor (OxiM) has a ferroelectric gate field-effect transistor structure (Fig. 2). Since the polarization of Pb(Zr,Ti)O3 film is changed by applying gate voltage (VG), the channel conductance at the ZnO / Pr(Zr,Ti)O3 interface can be modulated (Fig. 3). Memorized conductance can be maintained without fluctuation [4]. In addition, ferroelectric polarization can be modulated by changing the height and the width of the applied voltage pulse to the gate electrode. Fig. 4 shows the conduction change after applying pulse voltages.","PeriodicalId":6808,"journal":{"name":"70th Device Research Conference","volume":"31 1","pages":"275-276"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Biologically-inspired learning device using three-terminal ferroelectric memristor\",\"authors\":\"M. Ueda, Y. Kaneko, Y. Nishitani, T. Morie, E. Fujii\",\"doi\":\"10.1109/DRC.2012.6256971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simple synaptic device with a spike-timing-dependent synaptic plasticity (STDP) learning function is a key device that can realize a brain-like processor. STDP is a learning mechanism of synapses in mammalian brains [1]. A memristor [2, 3] is a promising candidate for synaptic devices. However, since the conventional memristor is a two-terminal electric element and the signal magnitude at learning exceeds the processing, it is difficult to realize STDP learning by simultaneously processing the signal. We proposed a unique three-terminal memristor using a ferroelectric thin film [4]. Its three-terminal device structure enables the STDP function without disturbing the signal processing between neurons (Fig. 1). This all oxide memristor (OxiM) has a ferroelectric gate field-effect transistor structure (Fig. 2). Since the polarization of Pb(Zr,Ti)O3 film is changed by applying gate voltage (VG), the channel conductance at the ZnO / Pr(Zr,Ti)O3 interface can be modulated (Fig. 3). Memorized conductance can be maintained without fluctuation [4]. In addition, ferroelectric polarization can be modulated by changing the height and the width of the applied voltage pulse to the gate electrode. Fig. 4 shows the conduction change after applying pulse voltages.\",\"PeriodicalId\":6808,\"journal\":{\"name\":\"70th Device Research Conference\",\"volume\":\"31 1\",\"pages\":\"275-276\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"70th Device Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2012.6256971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"70th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2012.6256971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

一种具有脉冲时间依赖突触可塑性(STDP)学习功能的简单突触装置是实现类脑处理器的关键装置。STDP是哺乳动物大脑突触的一种学习机制[1]。忆阻器[2,3]是一种很有前途的突触器件。然而,由于传统的忆阻器是一种双端电元件,学习时的信号幅度超过处理时的信号幅度,因此很难通过同时处理信号来实现STDP学习。我们提出了一种独特的使用铁电薄膜的三端忆阻器[4]。它的三端器件结构使得STDP功能不会干扰神经元之间的信号处理(图1)。这种全氧化物忆阻器(oxm)具有铁电栅场效应晶体管结构(图2)。由于施加栅极电压(VG)改变Pb(Zr,Ti)O3薄膜的极化,ZnO / Pr(Zr,Ti)O3界面的通道电导可以被调制(图3)。记忆电导可以保持不波动[4]。此外,铁电极化可以通过改变施加到栅极的电压脉冲的高度和宽度来调制。图4显示了施加脉冲电压后的导通变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biologically-inspired learning device using three-terminal ferroelectric memristor
A simple synaptic device with a spike-timing-dependent synaptic plasticity (STDP) learning function is a key device that can realize a brain-like processor. STDP is a learning mechanism of synapses in mammalian brains [1]. A memristor [2, 3] is a promising candidate for synaptic devices. However, since the conventional memristor is a two-terminal electric element and the signal magnitude at learning exceeds the processing, it is difficult to realize STDP learning by simultaneously processing the signal. We proposed a unique three-terminal memristor using a ferroelectric thin film [4]. Its three-terminal device structure enables the STDP function without disturbing the signal processing between neurons (Fig. 1). This all oxide memristor (OxiM) has a ferroelectric gate field-effect transistor structure (Fig. 2). Since the polarization of Pb(Zr,Ti)O3 film is changed by applying gate voltage (VG), the channel conductance at the ZnO / Pr(Zr,Ti)O3 interface can be modulated (Fig. 3). Memorized conductance can be maintained without fluctuation [4]. In addition, ferroelectric polarization can be modulated by changing the height and the width of the applied voltage pulse to the gate electrode. Fig. 4 shows the conduction change after applying pulse voltages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancement-mode Al045Ga0.55N/Al0.3Ga0.7N High Electron Mobility Transistor with p-Al0.3Ga0.7N Gate CMOS-compatible Ti/Al ohmic contacts (R c ° C) Role of screening, heating, and dielectrics on high-field transport in graphene Electrical control of nuclear-spin-induced Hall voltage in an inverted InAs heterostructure Piezotronics and piezo-phototronics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1