葡萄糖激酶在葡萄糖稳态中的细胞特异性作用。

Catherine Postic, Masakazli Shiota, M. Magnuson
{"title":"葡萄糖激酶在葡萄糖稳态中的细胞特异性作用。","authors":"Catherine Postic, Masakazli Shiota, M. Magnuson","doi":"10.1210/RP.56.1.195","DOIUrl":null,"url":null,"abstract":"Mutations in the glucokinase (GK) gene cause two different diseases of blood glucose regulation: maturity onset diabetes of the young, type 2 (MODY-2) and persistent hyperinsulinemic hypoglycemia of infancy (PHHI). To gain further understanding of the pathophysiology of these disorders, we have used both transgenic and gene-targeting strategies to explore the relationship between GK gene expression in specific tissues and the blood glucose concentration. These studies, which have included the use of aCre/loxP gene-targeting strategy to perform both pancreatic beta-cell- and hepatocyte-specific knockouts of GK, clearly demonstrate multiple, cell-specific roles for this hexokinase that, together, contribute to the maintainance of euglycemia. In the pancreatic beta cell, GK functions as the glucose sensor, determining the threshold for insulin secretion. Mice lacking GK in the pancreatic beta cell die within 3 days of birth of profound hyperglycemia. In the liver, GK facilitates hepatic glucose uptake during hyperglycemia and is essential for the appropriate regulation of a network of glucose-responsive genes. While mice lacking hepatic GK are viable, and are only mildly hyperglycemic when fasted, they also have impaired insulin secretion in response to hyperglycemia. The mechanisms that enable hepatic GK to affect beta-cell function are not yet understood. Thus, the hyperglycemia that occurs in MODY-2 is due to impaired GK function in both the liver and pancreatic beta cell, although the defect in beta-cell function is clearly more dominant. Whether defects in GK gene expression also impair glucose sensing by neurons in the brain or enteroendocrine cells in gut, two other sites known to express GK, remains to be determined. Moreover, whether the pathophysiology of PHHI also involves multitissue dysfunction remains to be explored.","PeriodicalId":21099,"journal":{"name":"Recent progress in hormone research","volume":"68 1","pages":"195-217"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"171","resultStr":"{\"title\":\"Cell-specific roles of glucokinase in glucose homeostasis.\",\"authors\":\"Catherine Postic, Masakazli Shiota, M. Magnuson\",\"doi\":\"10.1210/RP.56.1.195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mutations in the glucokinase (GK) gene cause two different diseases of blood glucose regulation: maturity onset diabetes of the young, type 2 (MODY-2) and persistent hyperinsulinemic hypoglycemia of infancy (PHHI). To gain further understanding of the pathophysiology of these disorders, we have used both transgenic and gene-targeting strategies to explore the relationship between GK gene expression in specific tissues and the blood glucose concentration. These studies, which have included the use of aCre/loxP gene-targeting strategy to perform both pancreatic beta-cell- and hepatocyte-specific knockouts of GK, clearly demonstrate multiple, cell-specific roles for this hexokinase that, together, contribute to the maintainance of euglycemia. In the pancreatic beta cell, GK functions as the glucose sensor, determining the threshold for insulin secretion. Mice lacking GK in the pancreatic beta cell die within 3 days of birth of profound hyperglycemia. In the liver, GK facilitates hepatic glucose uptake during hyperglycemia and is essential for the appropriate regulation of a network of glucose-responsive genes. While mice lacking hepatic GK are viable, and are only mildly hyperglycemic when fasted, they also have impaired insulin secretion in response to hyperglycemia. The mechanisms that enable hepatic GK to affect beta-cell function are not yet understood. Thus, the hyperglycemia that occurs in MODY-2 is due to impaired GK function in both the liver and pancreatic beta cell, although the defect in beta-cell function is clearly more dominant. Whether defects in GK gene expression also impair glucose sensing by neurons in the brain or enteroendocrine cells in gut, two other sites known to express GK, remains to be determined. Moreover, whether the pathophysiology of PHHI also involves multitissue dysfunction remains to be explored.\",\"PeriodicalId\":21099,\"journal\":{\"name\":\"Recent progress in hormone research\",\"volume\":\"68 1\",\"pages\":\"195-217\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"171\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent progress in hormone research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1210/RP.56.1.195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent progress in hormone research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1210/RP.56.1.195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 171

摘要

葡萄糖激酶(GK)基因突变导致两种不同的血糖调节疾病:青少年成熟型糖尿病2型(MODY-2)和婴儿期持久性高胰岛素性低血糖(PHHI)。为了进一步了解这些疾病的病理生理,我们采用转基因和基因靶向两种策略来探索GK基因在特定组织中的表达与血糖浓度的关系。这些研究包括使用aCre/loxP基因靶向策略进行胰腺β细胞和肝细胞特异性敲除GK,清楚地证明了这种己糖激酶的多种细胞特异性作用,这些作用共同有助于维持血糖。在胰腺β细胞中,GK起葡萄糖传感器的作用,决定胰岛素分泌的阈值。胰腺β细胞缺乏GK的小鼠在出生后3天内死于深度高血糖。在肝脏中,GK促进高血糖期间肝脏葡萄糖摄取,对葡萄糖反应基因网络的适当调节至关重要。虽然缺乏肝GK的小鼠可以存活,并且在禁食时仅出现轻度高血糖,但它们也会因高血糖而导致胰岛素分泌受损。使肝GK影响β细胞功能的机制尚不清楚。因此,在MODY-2中发生的高血糖是由于肝脏和胰腺β细胞的GK功能受损,尽管β细胞功能的缺陷显然更占优势。GK基因表达的缺陷是否也会损害大脑神经元或肠道肠内分泌细胞的葡萄糖感知,这两个已知表达GK的其他部位仍有待确定。此外,PHHI的病理生理是否也涉及多组织功能障碍仍有待探讨。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cell-specific roles of glucokinase in glucose homeostasis.
Mutations in the glucokinase (GK) gene cause two different diseases of blood glucose regulation: maturity onset diabetes of the young, type 2 (MODY-2) and persistent hyperinsulinemic hypoglycemia of infancy (PHHI). To gain further understanding of the pathophysiology of these disorders, we have used both transgenic and gene-targeting strategies to explore the relationship between GK gene expression in specific tissues and the blood glucose concentration. These studies, which have included the use of aCre/loxP gene-targeting strategy to perform both pancreatic beta-cell- and hepatocyte-specific knockouts of GK, clearly demonstrate multiple, cell-specific roles for this hexokinase that, together, contribute to the maintainance of euglycemia. In the pancreatic beta cell, GK functions as the glucose sensor, determining the threshold for insulin secretion. Mice lacking GK in the pancreatic beta cell die within 3 days of birth of profound hyperglycemia. In the liver, GK facilitates hepatic glucose uptake during hyperglycemia and is essential for the appropriate regulation of a network of glucose-responsive genes. While mice lacking hepatic GK are viable, and are only mildly hyperglycemic when fasted, they also have impaired insulin secretion in response to hyperglycemia. The mechanisms that enable hepatic GK to affect beta-cell function are not yet understood. Thus, the hyperglycemia that occurs in MODY-2 is due to impaired GK function in both the liver and pancreatic beta cell, although the defect in beta-cell function is clearly more dominant. Whether defects in GK gene expression also impair glucose sensing by neurons in the brain or enteroendocrine cells in gut, two other sites known to express GK, remains to be determined. Moreover, whether the pathophysiology of PHHI also involves multitissue dysfunction remains to be explored.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Polymorphisms in the glucocorticoid receptor gene and their associations with metabolic parameters and body composition. Glucocorticoids and 11beta-hydroxysteroid dehydrogenase in adipose tissue. The central melanocortin system and the integration of short- and long-term regulators of energy homeostasis. Monogenic human obesity syndromes. Cardiomyocyte calcium and calcium/calmodulin-dependent protein kinase II: friends or foes?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1