Taketo Kowaki, W. Matsumura, Koki Hanasaku, Ryo Okuno, Daisuke Inahara, S. Matsuda, S. Kurai, Yongzhao Yao, Y. Ishikawa, N. Okada, Y. Yamada
{"title":"AlGaN通道层中Si掺杂对N极AlGaN/AlN fet性能的影响","authors":"Taketo Kowaki, W. Matsumura, Koki Hanasaku, Ryo Okuno, Daisuke Inahara, S. Matsuda, S. Kurai, Yongzhao Yao, Y. Ishikawa, N. Okada, Y. Yamada","doi":"10.1002/pssa.202200872","DOIUrl":null,"url":null,"abstract":"The nitrogen‐polar (N‐polar) AlGaN/AlN structure is expected to have higher carrier density than conventional metal‐polar AlGaN/GaN electronic devices, and the AlN substrate offers various advantages, such as high breakdown voltage and high‐temperature operation. Herein, a N‐polar AlGaN/AlN‐heterostructured field‐effect transistor (FET) with static FET characteristics is successfully fabricated. However, the drain current density, IDS, remains significantly small. This study aims to improve IDS by doping Si in the topmost AlGaN channel layer under various conditions.","PeriodicalId":87717,"journal":{"name":"Physica status solidi (A): Applied research","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Si‐Doping Effects in AlGaN Channel Layer on Performance of N‐Polar AlGaN/AlN FETs\",\"authors\":\"Taketo Kowaki, W. Matsumura, Koki Hanasaku, Ryo Okuno, Daisuke Inahara, S. Matsuda, S. Kurai, Yongzhao Yao, Y. Ishikawa, N. Okada, Y. Yamada\",\"doi\":\"10.1002/pssa.202200872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nitrogen‐polar (N‐polar) AlGaN/AlN structure is expected to have higher carrier density than conventional metal‐polar AlGaN/GaN electronic devices, and the AlN substrate offers various advantages, such as high breakdown voltage and high‐temperature operation. Herein, a N‐polar AlGaN/AlN‐heterostructured field‐effect transistor (FET) with static FET characteristics is successfully fabricated. However, the drain current density, IDS, remains significantly small. This study aims to improve IDS by doping Si in the topmost AlGaN channel layer under various conditions.\",\"PeriodicalId\":87717,\"journal\":{\"name\":\"Physica status solidi (A): Applied research\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica status solidi (A): Applied research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/pssa.202200872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica status solidi (A): Applied research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssa.202200872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Si‐Doping Effects in AlGaN Channel Layer on Performance of N‐Polar AlGaN/AlN FETs
The nitrogen‐polar (N‐polar) AlGaN/AlN structure is expected to have higher carrier density than conventional metal‐polar AlGaN/GaN electronic devices, and the AlN substrate offers various advantages, such as high breakdown voltage and high‐temperature operation. Herein, a N‐polar AlGaN/AlN‐heterostructured field‐effect transistor (FET) with static FET characteristics is successfully fabricated. However, the drain current density, IDS, remains significantly small. This study aims to improve IDS by doping Si in the topmost AlGaN channel layer under various conditions.