葡萄酒数据集的详细研究及其优化

Parneeta Dhaliwal, Suyash Sharma, Lakshay Chauhan
{"title":"葡萄酒数据集的详细研究及其优化","authors":"Parneeta Dhaliwal, Suyash Sharma, Lakshay Chauhan","doi":"10.5815/ijisa.2022.05.04","DOIUrl":null,"url":null,"abstract":"The consumption of wine these days is becoming more common in social gatherings and to monitor the health of individuals it's very important to maintain the quality of the wine. For the assessment of wine quality many methods have been proposed. We have described a technique to pre-process the “Vinho Verde” wine dataset. The dataset consists of red and white wine samples. The wine dataset size has been reduced from a total of 13 attributes to 9 attributes without any loss of performance. This has been validated through various classification techniques like Random Forest Classifier, Decision tree Classifiers, K-Nearest Neighbor Classifier and Artificial Neural Network Classifier. These classifiers have been compared based on two performance metrics of accuracy and RMSE values. Among the three classifiers Random Forest tends to outperform the other two classifiers in various measures for predicting the quality of the wine.","PeriodicalId":14067,"journal":{"name":"International Journal of Intelligent Systems and Applications in Engineering","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Detailed Study of Wine Dataset and its Optimization\",\"authors\":\"Parneeta Dhaliwal, Suyash Sharma, Lakshay Chauhan\",\"doi\":\"10.5815/ijisa.2022.05.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The consumption of wine these days is becoming more common in social gatherings and to monitor the health of individuals it's very important to maintain the quality of the wine. For the assessment of wine quality many methods have been proposed. We have described a technique to pre-process the “Vinho Verde” wine dataset. The dataset consists of red and white wine samples. The wine dataset size has been reduced from a total of 13 attributes to 9 attributes without any loss of performance. This has been validated through various classification techniques like Random Forest Classifier, Decision tree Classifiers, K-Nearest Neighbor Classifier and Artificial Neural Network Classifier. These classifiers have been compared based on two performance metrics of accuracy and RMSE values. Among the three classifiers Random Forest tends to outperform the other two classifiers in various measures for predicting the quality of the wine.\",\"PeriodicalId\":14067,\"journal\":{\"name\":\"International Journal of Intelligent Systems and Applications in Engineering\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems and Applications in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5815/ijisa.2022.05.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems and Applications in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijisa.2022.05.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

摘要

如今,在社交聚会中,葡萄酒的消费变得越来越普遍,为了监测个人的健康状况,保持葡萄酒的质量非常重要。为了评价葡萄酒的品质,人们提出了许多方法。我们描述了一种预处理“verho Verde”葡萄酒数据集的技术。该数据集由红葡萄酒和白葡萄酒样本组成。葡萄酒数据集的大小已经从13个属性减少到9个属性,而没有任何性能损失。这已经通过各种分类技术得到验证,如随机森林分类器、决策树分类器、k近邻分类器和人工神经网络分类器。这些分类器基于精度和RMSE值的两个性能指标进行了比较。在三个分类器中,随机森林在预测葡萄酒质量的各种措施中往往优于其他两个分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detailed Study of Wine Dataset and its Optimization
The consumption of wine these days is becoming more common in social gatherings and to monitor the health of individuals it's very important to maintain the quality of the wine. For the assessment of wine quality many methods have been proposed. We have described a technique to pre-process the “Vinho Verde” wine dataset. The dataset consists of red and white wine samples. The wine dataset size has been reduced from a total of 13 attributes to 9 attributes without any loss of performance. This has been validated through various classification techniques like Random Forest Classifier, Decision tree Classifiers, K-Nearest Neighbor Classifier and Artificial Neural Network Classifier. These classifiers have been compared based on two performance metrics of accuracy and RMSE values. Among the three classifiers Random Forest tends to outperform the other two classifiers in various measures for predicting the quality of the wine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Intelligent Systems and Applications in Engineering
International Journal of Intelligent Systems and Applications in Engineering Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
1.30
自引率
0.00%
发文量
18
期刊最新文献
Predicting Automobile Stock Prices Index in the Tehran Stock Exchange Using Machine Learning Models A Hybrid Unsupervised Density-based Approach with Mutual Information for Text Outlier Detection Digital Control and Management of Water Supply Infrastructure Using Embedded Systems and Machine Learning Machine Learning for Weather Forecasting: XGBoost vs SVM vs Random Forest in Predicting Temperature for Visakhapatnam An Enhanced Approach to Recommend Data Structures and Algorithms Problems Using Content-based Filtering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1