路径整合的神经形态方法:具有视觉驱动复位的头部方向尖峰神经网络

Raphaela Kreiser, M. Cartiglia, Julien N. P. Martel, J. Conradt, Yulia Sandamirskaya
{"title":"路径整合的神经形态方法:具有视觉驱动复位的头部方向尖峰神经网络","authors":"Raphaela Kreiser, M. Cartiglia, Julien N. P. Martel, J. Conradt, Yulia Sandamirskaya","doi":"10.1109/ISCAS.2018.8351509","DOIUrl":null,"url":null,"abstract":"Simultaneous localization and mapping (SLAM) is one of the core tasks of mobile autonomous robots. Looking for power efficient and embedded solutions for SLAM is an important challenge when building controllers for small and agile robots. Biological neural systems of even simple animals are until now unprecedented in their ability to localize themselves in an unknown environment. Neuromorphic engineering offers ultra low-power and compact computing hardware, in which biologically inspired neuronal architectures for SLAM can be realised. In this paper, we propose an on chip approach for one of the components of SLAM: path integration. Our solution takes inspiration from biology and uses motor command information to estimate the orientation of an agent solely in a spiking neural network. We realise this network on a neuromorphic device that implements artificial neurons and synapses with analog electronics. The neural network receives visual input from an event-based camera and uses this information to correct the on-chip spiking neurons estimate of the robot's orientation. This system can be easily integrated with other localization and mapping components on chip and is a step towards a fully neuromorphic SLAM.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"66 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"A Neuromorphic Approach to Path Integration: A Head-Direction Spiking Neural Network with Vision-driven Reset\",\"authors\":\"Raphaela Kreiser, M. Cartiglia, Julien N. P. Martel, J. Conradt, Yulia Sandamirskaya\",\"doi\":\"10.1109/ISCAS.2018.8351509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simultaneous localization and mapping (SLAM) is one of the core tasks of mobile autonomous robots. Looking for power efficient and embedded solutions for SLAM is an important challenge when building controllers for small and agile robots. Biological neural systems of even simple animals are until now unprecedented in their ability to localize themselves in an unknown environment. Neuromorphic engineering offers ultra low-power and compact computing hardware, in which biologically inspired neuronal architectures for SLAM can be realised. In this paper, we propose an on chip approach for one of the components of SLAM: path integration. Our solution takes inspiration from biology and uses motor command information to estimate the orientation of an agent solely in a spiking neural network. We realise this network on a neuromorphic device that implements artificial neurons and synapses with analog electronics. The neural network receives visual input from an event-based camera and uses this information to correct the on-chip spiking neurons estimate of the robot's orientation. This system can be easily integrated with other localization and mapping components on chip and is a step towards a fully neuromorphic SLAM.\",\"PeriodicalId\":6569,\"journal\":{\"name\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"volume\":\"66 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2018.8351509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2018.8351509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

同时定位与映射(SLAM)是移动自主机器人的核心任务之一。在为小型敏捷机器人构建控制器时,为SLAM寻找节能和嵌入式解决方案是一个重要的挑战。即使是简单动物的生物神经系统在未知环境中定位自己的能力也是前所未有的。神经形态工程提供了超低功耗和紧凑的计算硬件,其中生物启发的SLAM神经元架构可以实现。在本文中,我们提出了一种SLAM组件之一的片上方法:路径集成。我们的解决方案从生物学中获得灵感,并使用运动命令信息来估计单独在脉冲神经网络中的代理的方向。我们在一个神经形态设备上实现了这个网络,这个设备用模拟电子技术实现了人工神经元和突触。神经网络接收来自基于事件的摄像机的视觉输入,并使用这些信息来校正芯片上的尖峰神经元对机器人方向的估计。该系统可以很容易地与芯片上的其他定位和映射组件集成,是迈向完全神经形态SLAM的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Neuromorphic Approach to Path Integration: A Head-Direction Spiking Neural Network with Vision-driven Reset
Simultaneous localization and mapping (SLAM) is one of the core tasks of mobile autonomous robots. Looking for power efficient and embedded solutions for SLAM is an important challenge when building controllers for small and agile robots. Biological neural systems of even simple animals are until now unprecedented in their ability to localize themselves in an unknown environment. Neuromorphic engineering offers ultra low-power and compact computing hardware, in which biologically inspired neuronal architectures for SLAM can be realised. In this paper, we propose an on chip approach for one of the components of SLAM: path integration. Our solution takes inspiration from biology and uses motor command information to estimate the orientation of an agent solely in a spiking neural network. We realise this network on a neuromorphic device that implements artificial neurons and synapses with analog electronics. The neural network receives visual input from an event-based camera and uses this information to correct the on-chip spiking neurons estimate of the robot's orientation. This system can be easily integrated with other localization and mapping components on chip and is a step towards a fully neuromorphic SLAM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra-Low Power Wide-Dynamic-Range Universal Interface for Capacitive and Resistive Sensors An Energy-Efficient 13-bit Zero-Crossing ΔΣ Capacitance-to-Digital Converter with 1 pF-to-10 nF Sensing Range Power Optimized Comparator Selecting Method For Stochastic ADC Brain-inspired recurrent neural network with plastic RRAM synapses On the Use of Approximate Multipliers in LMS Adaptive Filters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1