P. Scheeper, B. Nordstrand, J. O. Gullv, B. Liu, T. Clausen, L. Midjord, T. Storgaard-Larsen
{"title":"一种基于MEMS技术的新型测量传声器","authors":"P. Scheeper, B. Nordstrand, J. O. Gullv, B. Liu, T. Clausen, L. Midjord, T. Storgaard-Larsen","doi":"10.1109/JMEMS.2003.820260","DOIUrl":null,"url":null,"abstract":"This paper presents a new type of measurement microphone that is based on MEMS technology. The silicon chip design and fabrication are discussed, as well as the specially developed packaging technology. The microphones are tested on a number of key parameters for measurement microphones: sensitivity, noise level, frequency response, and immunity to disturbing environmental parameters, such as temperature changes, humidity, static pressure variations, and vibration. A sensitivity of 22 mV/Pa (-33 dB re. 1 V/Pa), and a noise level of 23 dB(A) were measured. The noise level is 7 dB lower than state-of-the-art 1/4-inch measurement microphones. A good uniformity on sensitivity and frequency response has been measured. The sensitivity to temperature changes, humidity, static pressure variations and vibrations is fully comparable to the traditional measurement microphones. This paper shows that high-quality measurement microphones can be made using MEMS technology, with a superior noise performance.","PeriodicalId":13438,"journal":{"name":"IEEE\\/ASME Journal of Microelectromechanical Systems","volume":"11 1","pages":"880-891"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"116","resultStr":"{\"title\":\"A new measurement microphone based on MEMS technology\",\"authors\":\"P. Scheeper, B. Nordstrand, J. O. Gullv, B. Liu, T. Clausen, L. Midjord, T. Storgaard-Larsen\",\"doi\":\"10.1109/JMEMS.2003.820260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new type of measurement microphone that is based on MEMS technology. The silicon chip design and fabrication are discussed, as well as the specially developed packaging technology. The microphones are tested on a number of key parameters for measurement microphones: sensitivity, noise level, frequency response, and immunity to disturbing environmental parameters, such as temperature changes, humidity, static pressure variations, and vibration. A sensitivity of 22 mV/Pa (-33 dB re. 1 V/Pa), and a noise level of 23 dB(A) were measured. The noise level is 7 dB lower than state-of-the-art 1/4-inch measurement microphones. A good uniformity on sensitivity and frequency response has been measured. The sensitivity to temperature changes, humidity, static pressure variations and vibrations is fully comparable to the traditional measurement microphones. This paper shows that high-quality measurement microphones can be made using MEMS technology, with a superior noise performance.\",\"PeriodicalId\":13438,\"journal\":{\"name\":\"IEEE\\\\/ASME Journal of Microelectromechanical Systems\",\"volume\":\"11 1\",\"pages\":\"880-891\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"116\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE\\\\/ASME Journal of Microelectromechanical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JMEMS.2003.820260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE\\/ASME Journal of Microelectromechanical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JMEMS.2003.820260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 116
摘要
本文提出了一种基于MEMS技术的新型测量传声器。讨论了硅芯片的设计和制造,以及专门开发的封装技术。对测量麦克风的一些关键参数进行了测试:灵敏度、噪声水平、频率响应以及对干扰环境参数(如温度变化、湿度、静压变化和振动)的抗扰性。测量到的灵敏度为22 mV/Pa (-33 dB = 1 V/Pa),噪声级为23 dB(A)。噪音水平比最先进的1/4英寸测量麦克风低7分贝。在灵敏度和频率响应上具有良好的均匀性。对温度变化、湿度、静压变化和振动的灵敏度完全可以与传统的测量麦克风相媲美。本文表明,采用MEMS技术可以制造出高质量的测量麦克风,并且具有优异的噪声性能。
A new measurement microphone based on MEMS technology
This paper presents a new type of measurement microphone that is based on MEMS technology. The silicon chip design and fabrication are discussed, as well as the specially developed packaging technology. The microphones are tested on a number of key parameters for measurement microphones: sensitivity, noise level, frequency response, and immunity to disturbing environmental parameters, such as temperature changes, humidity, static pressure variations, and vibration. A sensitivity of 22 mV/Pa (-33 dB re. 1 V/Pa), and a noise level of 23 dB(A) were measured. The noise level is 7 dB lower than state-of-the-art 1/4-inch measurement microphones. A good uniformity on sensitivity and frequency response has been measured. The sensitivity to temperature changes, humidity, static pressure variations and vibrations is fully comparable to the traditional measurement microphones. This paper shows that high-quality measurement microphones can be made using MEMS technology, with a superior noise performance.