双有源桥式变换器变压器位移绕组的建模与优化

Zhan Shen, Yanfeng Shen, Zian Qin, Huai Wang
{"title":"双有源桥式变换器变压器位移绕组的建模与优化","authors":"Zhan Shen, Yanfeng Shen, Zian Qin, Huai Wang","doi":"10.23919/IPEC.2018.8507924","DOIUrl":null,"url":null,"abstract":"The transformer in the dual active bridge converter (DAB) is the key element which provides galvanic insulation and voltage conversion. The parasitic parameters, including winding capacitance, ac resistance, and leakage inductance, are the primary considerations in its winding design. Without proper consideration of those parameters could result in issues on current ringing, high power loss, and overheating. In this paper, a comprehensive study is devoted to those parameters. A winding design method is presented by taking all those parameters into consideration. Special attention is paid to the impact of displacement winding, which is quite often in the manufacture and especially in prototype design phase. Both the normal and displacement winding will be studied and compared, with analytical, simulation, and experimental methods. Through comparison, additional coefficients are introduced to the simple analytical equations so that they could also be applied for displacement windings. Several considerations are given to control those parameters within a reasonable range in the design and manufacture phase. Finally, the analysis and design method are verified by finite element method and the experimental results on a 120 kHz prototype, and can be extended to other high-frequency magnetic designs.","PeriodicalId":6610,"journal":{"name":"2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia)","volume":"51 1","pages":"1925-1930"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Modeling and Optimization of Displacement Windings for Transformers in Dual Active Bridge Converters\",\"authors\":\"Zhan Shen, Yanfeng Shen, Zian Qin, Huai Wang\",\"doi\":\"10.23919/IPEC.2018.8507924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The transformer in the dual active bridge converter (DAB) is the key element which provides galvanic insulation and voltage conversion. The parasitic parameters, including winding capacitance, ac resistance, and leakage inductance, are the primary considerations in its winding design. Without proper consideration of those parameters could result in issues on current ringing, high power loss, and overheating. In this paper, a comprehensive study is devoted to those parameters. A winding design method is presented by taking all those parameters into consideration. Special attention is paid to the impact of displacement winding, which is quite often in the manufacture and especially in prototype design phase. Both the normal and displacement winding will be studied and compared, with analytical, simulation, and experimental methods. Through comparison, additional coefficients are introduced to the simple analytical equations so that they could also be applied for displacement windings. Several considerations are given to control those parameters within a reasonable range in the design and manufacture phase. Finally, the analysis and design method are verified by finite element method and the experimental results on a 120 kHz prototype, and can be extended to other high-frequency magnetic designs.\",\"PeriodicalId\":6610,\"journal\":{\"name\":\"2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia)\",\"volume\":\"51 1\",\"pages\":\"1925-1930\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/IPEC.2018.8507924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IPEC.2018.8507924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

双有源桥式变换器(DAB)中的变压器是提供电绝缘和电压转换的关键元件。寄生参数,包括绕组电容、交流电阻和漏感,是其绕组设计的主要考虑因素。如果不适当考虑这些参数,可能会导致电流振铃、高功率损耗和过热等问题。本文对这些参数进行了全面的研究。提出了一种综合考虑这些参数的绕组设计方法。特别要注意的是位移绕组的影响,这是相当经常在制造,特别是在原型设计阶段。将采用分析、模拟和实验的方法对正常绕组和位移绕组进行研究和比较。通过比较,在简单的解析方程中引入附加系数,使其同样适用于位移绕组。在设计和制造阶段,提出了将这些参数控制在合理范围内的几点考虑。最后,通过有限元方法和120 kHz样机的实验结果验证了分析设计方法的正确性,并可推广到其他高频磁设计中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling and Optimization of Displacement Windings for Transformers in Dual Active Bridge Converters
The transformer in the dual active bridge converter (DAB) is the key element which provides galvanic insulation and voltage conversion. The parasitic parameters, including winding capacitance, ac resistance, and leakage inductance, are the primary considerations in its winding design. Without proper consideration of those parameters could result in issues on current ringing, high power loss, and overheating. In this paper, a comprehensive study is devoted to those parameters. A winding design method is presented by taking all those parameters into consideration. Special attention is paid to the impact of displacement winding, which is quite often in the manufacture and especially in prototype design phase. Both the normal and displacement winding will be studied and compared, with analytical, simulation, and experimental methods. Through comparison, additional coefficients are introduced to the simple analytical equations so that they could also be applied for displacement windings. Several considerations are given to control those parameters within a reasonable range in the design and manufacture phase. Finally, the analysis and design method are verified by finite element method and the experimental results on a 120 kHz prototype, and can be extended to other high-frequency magnetic designs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flying Capacitor Resonant Pole Inverter with Direct Inductor Current Feedback Comparative Study of Single-Phase Fundamental Component Frequency Estimation Schemes under Time-varying Harmonic Distortion Operation Magnet Arrangement suitable for Large Air Gap Length in Linear PM Vernier Motor Fall Prevention and Vibration Suppression of Wheelchair Using Rider Motion State New Module with Isolated Half Bridge or Isolated Full Bridge for Modular Medium voltage converter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1