MOCVD制备的高效InAs/GaAs量子点太阳能电池

K. Tanabe, D. Guimard, D. Bordel, R. Morihara, M. Nishioka, Y. Arakawa
{"title":"MOCVD制备的高效InAs/GaAs量子点太阳能电池","authors":"K. Tanabe, D. Guimard, D. Bordel, R. Morihara, M. Nishioka, Y. Arakawa","doi":"10.1109/PVSC.2012.6317971","DOIUrl":null,"url":null,"abstract":"Quantum dot solar cells can potentially realize ultrahigh efficiencies in single p-n junction structures utilizing intermediate-level energy bands. However, so far most fabricated quantum dot solar cells have suffered from severe reduction of open-circuit voltage by incorporation of quantum dots resulting in significantly lower efficiencies than those without quantum dot. Here we fabricate a high-efficiency InAs/GaAs quantum dot solar cell. Our cell contains five layers of high-density (4 × 1010 cm-2 per layer) self-assembled InAs quantum dots grown by metalorganic chemical vapor deposition suppressing open-circuit-voltage degradation. We develop a dual-layer anti-reflection coating of optimum thicknesses. The resulting cell exhibits efficiencies of 18.7% under AM1.5G, 1 sun and 19.4% for 2 suns, the highest reported thus far, for any kind of quantum dot cell. Our high-efficiency demonstration in a cell grown by MOCVD is a strong encouragement towards the commercialization of quantum dot solar cells.","PeriodicalId":6318,"journal":{"name":"2012 38th IEEE Photovoltaic Specialists Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"High-efficiency InAs/GaAs quantum dot solar cells by MOCVD\",\"authors\":\"K. Tanabe, D. Guimard, D. Bordel, R. Morihara, M. Nishioka, Y. Arakawa\",\"doi\":\"10.1109/PVSC.2012.6317971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum dot solar cells can potentially realize ultrahigh efficiencies in single p-n junction structures utilizing intermediate-level energy bands. However, so far most fabricated quantum dot solar cells have suffered from severe reduction of open-circuit voltage by incorporation of quantum dots resulting in significantly lower efficiencies than those without quantum dot. Here we fabricate a high-efficiency InAs/GaAs quantum dot solar cell. Our cell contains five layers of high-density (4 × 1010 cm-2 per layer) self-assembled InAs quantum dots grown by metalorganic chemical vapor deposition suppressing open-circuit-voltage degradation. We develop a dual-layer anti-reflection coating of optimum thicknesses. The resulting cell exhibits efficiencies of 18.7% under AM1.5G, 1 sun and 19.4% for 2 suns, the highest reported thus far, for any kind of quantum dot cell. Our high-efficiency demonstration in a cell grown by MOCVD is a strong encouragement towards the commercialization of quantum dot solar cells.\",\"PeriodicalId\":6318,\"journal\":{\"name\":\"2012 38th IEEE Photovoltaic Specialists Conference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 38th IEEE Photovoltaic Specialists Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2012.6317971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 38th IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2012.6317971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

量子点太阳能电池可以利用中能级能带实现单p-n结结构的超高效率。然而,到目前为止,大多数制造的量子点太阳能电池由于加入量子点而导致开路电压严重降低,导致效率明显低于未加入量子点的太阳能电池。本文制备了一种高效的InAs/GaAs量子点太阳能电池。我们的电池包含五层高密度(每层4 × 1010 cm-2)自组装的InAs量子点,通过金属有机化学气相沉积生长,抑制开路电压退化。我们开发了一种最佳厚度的双层增透涂层。该电池在AM1.5G、1次太阳照射下的效率为18.7%,在2次太阳照射下的效率为19.4%,是迄今为止报道的任何量子点电池的最高效率。我们在MOCVD生长的电池中的高效演示是对量子点太阳能电池商业化的有力鼓励。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-efficiency InAs/GaAs quantum dot solar cells by MOCVD
Quantum dot solar cells can potentially realize ultrahigh efficiencies in single p-n junction structures utilizing intermediate-level energy bands. However, so far most fabricated quantum dot solar cells have suffered from severe reduction of open-circuit voltage by incorporation of quantum dots resulting in significantly lower efficiencies than those without quantum dot. Here we fabricate a high-efficiency InAs/GaAs quantum dot solar cell. Our cell contains five layers of high-density (4 × 1010 cm-2 per layer) self-assembled InAs quantum dots grown by metalorganic chemical vapor deposition suppressing open-circuit-voltage degradation. We develop a dual-layer anti-reflection coating of optimum thicknesses. The resulting cell exhibits efficiencies of 18.7% under AM1.5G, 1 sun and 19.4% for 2 suns, the highest reported thus far, for any kind of quantum dot cell. Our high-efficiency demonstration in a cell grown by MOCVD is a strong encouragement towards the commercialization of quantum dot solar cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra-Lightweight PV module design for Building Integrated Photovoltaics Advances in silicon surface texturization by metal assisted chemical etching for photovoltaic applications Inverse Metamorphic III-V/epi-SiGe Tandem Solar Cell Performance Assessed by Optical and Electrical Modeling Enabling High-Efficiency InAs/GaAs Quantum Dot Solar Cells by Epitaxial Lift-Off and Light Management An autocorrelation-based copula model for producing realistic clear-sky index and photovoltaic power generation time-series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1