伺服系统数据驱动模糊控制的低成本方法

IF 10.1 2区 工程技术 Q1 ENGINEERING, MECHANICAL Facta Universitatis-Series Mechanical Engineering Pub Date : 2022-04-08 DOI:10.22190/fume220111005p
R. Precup, S. Preitl, Claudia-Adina Bojan-Dragos, Elena-Lorena Hedrea, Raul-Cristian Roman, E. Petriu
{"title":"伺服系统数据驱动模糊控制的低成本方法","authors":"R. Precup, S. Preitl, Claudia-Adina Bojan-Dragos, Elena-Lorena Hedrea, Raul-Cristian Roman, E. Petriu","doi":"10.22190/fume220111005p","DOIUrl":null,"url":null,"abstract":"Servo systems become more and more important in control systems applications in various fields as both separate control systems and actuators. Ensuring very good control system performance using few information on the servo system model (viewed as a controlled process) is a challenging task. Starting with authors’ results on data-driven model-free control, fuzzy control and the indirect model-free tuning of fuzzy controllers, this paper suggests a low-cost approach to the data-driven fuzzy control of servo systems. The data-driven fuzzy control approach consists of six steps: (i) open-loop data-driven system identification to produce the process model from input-output data expressed as the system step response, (ii) Proportional-Integral (PI) controller tuning using the Extended Symmetrical Optimum (ESO) method, (iii) PI controller parameters mapping onto parameters of Takagi-Sugeno PI-fuzzy controller in terms of the modal equivalence principle, (iv) closed-loop data-driven system identification, (v) PI controller tuning using the ESO method, (vi) PI controller parameters mapping onto parameters of Takagi-Sugeno PI-fuzzy controller. The steps (iv), (v) and (vi) are optional. The approach is applied to the position control of a nonlinear servo system. The experimental results obtained on laboratory equipment validate the approach.","PeriodicalId":51338,"journal":{"name":"Facta Universitatis-Series Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A LOW-COST APPROACH TO DATA-DRIVEN FUZZY CONTROL OF SERVO SYSTEMS\",\"authors\":\"R. Precup, S. Preitl, Claudia-Adina Bojan-Dragos, Elena-Lorena Hedrea, Raul-Cristian Roman, E. Petriu\",\"doi\":\"10.22190/fume220111005p\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Servo systems become more and more important in control systems applications in various fields as both separate control systems and actuators. Ensuring very good control system performance using few information on the servo system model (viewed as a controlled process) is a challenging task. Starting with authors’ results on data-driven model-free control, fuzzy control and the indirect model-free tuning of fuzzy controllers, this paper suggests a low-cost approach to the data-driven fuzzy control of servo systems. The data-driven fuzzy control approach consists of six steps: (i) open-loop data-driven system identification to produce the process model from input-output data expressed as the system step response, (ii) Proportional-Integral (PI) controller tuning using the Extended Symmetrical Optimum (ESO) method, (iii) PI controller parameters mapping onto parameters of Takagi-Sugeno PI-fuzzy controller in terms of the modal equivalence principle, (iv) closed-loop data-driven system identification, (v) PI controller tuning using the ESO method, (vi) PI controller parameters mapping onto parameters of Takagi-Sugeno PI-fuzzy controller. The steps (iv), (v) and (vi) are optional. The approach is applied to the position control of a nonlinear servo system. The experimental results obtained on laboratory equipment validate the approach.\",\"PeriodicalId\":51338,\"journal\":{\"name\":\"Facta Universitatis-Series Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2022-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Facta Universitatis-Series Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.22190/fume220111005p\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.22190/fume220111005p","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2

摘要

伺服系统作为独立的控制系统和执行器,在各个领域的控制系统应用中发挥着越来越重要的作用。使用伺服系统模型(视为受控过程)的少量信息来确保非常好的控制系统性能是一项具有挑战性的任务。本文从作者在数据驱动的无模型控制、模糊控制和模糊控制器的间接无模型整定等方面的研究成果出发,提出了一种低成本的伺服系统数据驱动模糊控制方法。数据驱动的模糊控制方法包括六个步骤:(i)开环数据驱动系统辨识,从表示为系统阶跃响应的输入输出数据中产生过程模型,(ii)使用扩展对称最优(ESO)方法对比例积分(PI)控制器进行整定,(iii) PI控制器参数根据模态等效原理映射到Takagi-Sugeno PI-模糊控制器的参数,(iv)闭环数据驱动系统辨识,(v)使用ESO方法对PI控制器进行整定,(vi) PI控制器参数映射到Takagi-Sugeno PI-模糊控制器参数。步骤(iv)、(v)和(vi)是可选的。将该方法应用于非线性伺服系统的位置控制。在实验室设备上的实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A LOW-COST APPROACH TO DATA-DRIVEN FUZZY CONTROL OF SERVO SYSTEMS
Servo systems become more and more important in control systems applications in various fields as both separate control systems and actuators. Ensuring very good control system performance using few information on the servo system model (viewed as a controlled process) is a challenging task. Starting with authors’ results on data-driven model-free control, fuzzy control and the indirect model-free tuning of fuzzy controllers, this paper suggests a low-cost approach to the data-driven fuzzy control of servo systems. The data-driven fuzzy control approach consists of six steps: (i) open-loop data-driven system identification to produce the process model from input-output data expressed as the system step response, (ii) Proportional-Integral (PI) controller tuning using the Extended Symmetrical Optimum (ESO) method, (iii) PI controller parameters mapping onto parameters of Takagi-Sugeno PI-fuzzy controller in terms of the modal equivalence principle, (iv) closed-loop data-driven system identification, (v) PI controller tuning using the ESO method, (vi) PI controller parameters mapping onto parameters of Takagi-Sugeno PI-fuzzy controller. The steps (iv), (v) and (vi) are optional. The approach is applied to the position control of a nonlinear servo system. The experimental results obtained on laboratory equipment validate the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.40
自引率
2.50%
发文量
12
审稿时长
6 weeks
期刊介绍: Facta Universitatis, Series: Mechanical Engineering (FU Mech Eng) is an open-access, peer-reviewed international journal published by the University of Niš in the Republic of Serbia. It publishes high-quality, refereed papers three times a year, encompassing original theoretical and/or practice-oriented research as well as extended versions of previously published conference papers. The journal's scope covers the entire spectrum of Mechanical Engineering. Papers undergo rigorous peer review to ensure originality, relevance, and readability, maintaining high publication standards while offering a timely, comprehensive, and balanced review process.
期刊最新文献
INJURY FREQUENCY IN ARTISTIC GYMNASTICS – A SYSTEMATIC REVIEW A HYBRID DEEP LEARNING APPROACH FOR SENTIMENT ANALYSIS IN PRODUCT REVIEWS A NOVEL DISCRETE RAT SWARM OPTIMIZATION ALGORITHM FOR THE QUADRATIC ASSIGNMENT PROBLEM INVESTIGATION OF INDUSTRY 5.0 HURDLES AND THEIR MITIGATION TACTICS IN EMERGING ECONOMIES BY TODIM ARITHMETIC AND GEOMETRIC AGGREGATION OPERATORS IN SINGLE VALUE NEUTROSOPHIC ENVIRONMENT COMPLEX INTUITIONISTIC FUZZY DOMBI PRIORITIZED AGGREGATION OPERATORS AND THEIR APPLICATION FOR RESILIENT GREEN SUPPLIER SELECTION
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1